Header

UZH-Logo

Maintenance Infos

How to improve the standardization and the diagnostic performance of the fecal egg count reduction test?


Levecke, Bruno; Kaplan, Ray M; Thamsborg, Stig M; Torgerson, Paul R; Vercruysse, Jozef; Dobson, Robert J (2018). How to improve the standardization and the diagnostic performance of the fecal egg count reduction test? Veterinary Parasitology, 253:71-78.

Abstract

Although various studies have provided novel insights into how to best design, analyze and interpret a fecal egg count reduction test (FECRT), it is still not straightforward to provide guidance that allows improving both the standardization and the analytical performance of the FECRT across a variety of both animal and nematode species. For example, it has been suggested to recommend a minimum number of eggs to be counted under the microscope (not eggs per gram of feces), but we lack the evidence to recommend any number of eggs that would allow a reliable assessment of drug efficacy. Other aspects that need further research are the methodology of calculating uncertainty intervals (UIs; confidence intervals in case of frequentist methods and credible intervals in case of Bayesian methods) and the criteria of classifying drug efficacy into ‘normal’, ‘suspected’ and ‘reduced’. The aim of this study is to provide complementary insights into the current knowledge, and to ultimately provide guidance in the development of new standardized guidelines for the FECRT. First, data were generated using a simulation in which the ‘true’ drug efficacy (TDE) was evaluated by the FECRT under varying scenarios of sample size, analytic sensitivity of the diagnostic technique, and level of both intensity and aggregation of egg excretion. Second, the obtained data were analyzed with the aim (i) to verify which classification criteria allow for reliable detection of reduced drug efficacy, (ii) to identify the UI methodology that yields the most reliable assessment of drug efficacy (coverage of TDE) and detection of reduced drug efficacy, and (iii) to determine the required sample size and number of eggs counted under the microscope that optimizes the detection of reduced efficacy. Our results confirm that the currently recommended criteria for classifying drug efficacy are the most appropriate. Additionally, the UI methodologies we tested varied in coverage and ability to detect reduced drug efficacy, thus a combination of UI methodologies is recommended to assess the uncertainty across all scenarios of drug efficacy estimates. Finally, based on our model estimates we were able to determine the required number of eggs to count for each sample size, enabling investigators to optimize the probability of correctly classifying a theoretical TDE while minimizing both financial and technical resources.

Abstract

Although various studies have provided novel insights into how to best design, analyze and interpret a fecal egg count reduction test (FECRT), it is still not straightforward to provide guidance that allows improving both the standardization and the analytical performance of the FECRT across a variety of both animal and nematode species. For example, it has been suggested to recommend a minimum number of eggs to be counted under the microscope (not eggs per gram of feces), but we lack the evidence to recommend any number of eggs that would allow a reliable assessment of drug efficacy. Other aspects that need further research are the methodology of calculating uncertainty intervals (UIs; confidence intervals in case of frequentist methods and credible intervals in case of Bayesian methods) and the criteria of classifying drug efficacy into ‘normal’, ‘suspected’ and ‘reduced’. The aim of this study is to provide complementary insights into the current knowledge, and to ultimately provide guidance in the development of new standardized guidelines for the FECRT. First, data were generated using a simulation in which the ‘true’ drug efficacy (TDE) was evaluated by the FECRT under varying scenarios of sample size, analytic sensitivity of the diagnostic technique, and level of both intensity and aggregation of egg excretion. Second, the obtained data were analyzed with the aim (i) to verify which classification criteria allow for reliable detection of reduced drug efficacy, (ii) to identify the UI methodology that yields the most reliable assessment of drug efficacy (coverage of TDE) and detection of reduced drug efficacy, and (iii) to determine the required sample size and number of eggs counted under the microscope that optimizes the detection of reduced efficacy. Our results confirm that the currently recommended criteria for classifying drug efficacy are the most appropriate. Additionally, the UI methodologies we tested varied in coverage and ability to detect reduced drug efficacy, thus a combination of UI methodologies is recommended to assess the uncertainty across all scenarios of drug efficacy estimates. Finally, based on our model estimates we were able to determine the required number of eggs to count for each sample size, enabling investigators to optimize the probability of correctly classifying a theoretical TDE while minimizing both financial and technical resources.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 20 Feb 2019
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Chair in Veterinary Epidemiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Uncontrolled Keywords:General Veterinary, Parasitology, Anthelmintic efficacy; Anthelmintic resistance; Fecal egg count reduction test; Monitoring programs; Monte Carlo simulation; Standardization
Language:English
Date:1 April 2018
Deposited On:20 Feb 2019 08:59
Last Modified:25 Sep 2019 00:28
Publisher:Elsevier
ISSN:0304-4017
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.vetpar.2018.02.004
PubMed ID:29605007

Download