Header

UZH-Logo

Maintenance Infos

Prediction of fluid responsiveness in mechanically ventilated cardiac surgical patients: the performance of seven different functional hemodynamic parameters


Ganter, Michael T; Geisen, Martin; Hartnack, Sonja; Dzemali, Omer; Hofer, Christoph K (2018). Prediction of fluid responsiveness in mechanically ventilated cardiac surgical patients: the performance of seven different functional hemodynamic parameters. BMC Anesthesiology, 18(1):55.

Abstract

Background: Functional hemodynamic parameters such as stroke volume and pulse pressure variation (SVV and PPV) have been shown to be reliable predictors of fluid responsiveness in mechanically ventilated patients. Today, different minimally- and non-invasive hemodynamic monitoring systems measure functional hemodynamic parameters. Although some of these parameters are described by the same name, they differ in their measurement technique and thus may provide different results. We aimed to test the performance of seven functional hemodynamic parameters simultaneously in the same clinical setting. Methods: Hemodynamic measurements were done in 30 cardiac surgery patients that were mechanically ventilated. Before and after a standardized intravenous fluid bolus, hemodynamics were measured by the following monitoring systems: PiCCOplus (SVVPiCCO, PPVPiCCO), LiDCOrapid (SVVLiDCO, PPVLiDCO), FloTrac (SVVFloTrac), Philips Intellivue (PPVPhilips) and Masimo pulse oximeter (pleth variability index, PVI). Prediction of fluid responsiveness was tested by calculation of receiver operating characteristic (ROC) curves including a gray zone approach and compared using Fisher's Z-Test. Results: Fluid administration resulted in an increase in cardiac output, while all functional hemodynamic parameters decreased. A wide range of areas under the ROC-curve (AUC's) was observed: AUC-SVVPiCCO = 0.91, AUC-PPVPiCCO = 0.88, AUC-SVVLiDCO = 0.78, AUC-PPVLiDCO = 0.89, AUC-SVVFloTrac = 0.87, AUC-PPVPhilips = 0.92 and AUC-PVI = 0.68. Optimal threshold values for prediction of fluid responsiveness ranged between 9.5 and 17.5%. Lowest threshold values were observed for SVVLiDCO, highest for PVI. Conclusion: All functional hemodynamic parameters tested except for PVI showed that their use allows a reliable identification of potential fluid responders. PVI however, may not be suitable after cardiac surgery to predict fluid responsiveness.

Abstract

Background: Functional hemodynamic parameters such as stroke volume and pulse pressure variation (SVV and PPV) have been shown to be reliable predictors of fluid responsiveness in mechanically ventilated patients. Today, different minimally- and non-invasive hemodynamic monitoring systems measure functional hemodynamic parameters. Although some of these parameters are described by the same name, they differ in their measurement technique and thus may provide different results. We aimed to test the performance of seven functional hemodynamic parameters simultaneously in the same clinical setting. Methods: Hemodynamic measurements were done in 30 cardiac surgery patients that were mechanically ventilated. Before and after a standardized intravenous fluid bolus, hemodynamics were measured by the following monitoring systems: PiCCOplus (SVVPiCCO, PPVPiCCO), LiDCOrapid (SVVLiDCO, PPVLiDCO), FloTrac (SVVFloTrac), Philips Intellivue (PPVPhilips) and Masimo pulse oximeter (pleth variability index, PVI). Prediction of fluid responsiveness was tested by calculation of receiver operating characteristic (ROC) curves including a gray zone approach and compared using Fisher's Z-Test. Results: Fluid administration resulted in an increase in cardiac output, while all functional hemodynamic parameters decreased. A wide range of areas under the ROC-curve (AUC's) was observed: AUC-SVVPiCCO = 0.91, AUC-PPVPiCCO = 0.88, AUC-SVVLiDCO = 0.78, AUC-PPVLiDCO = 0.89, AUC-SVVFloTrac = 0.87, AUC-PPVPhilips = 0.92 and AUC-PVI = 0.68. Optimal threshold values for prediction of fluid responsiveness ranged between 9.5 and 17.5%. Lowest threshold values were observed for SVVLiDCO, highest for PVI. Conclusion: All functional hemodynamic parameters tested except for PVI showed that their use allows a reliable identification of potential fluid responders. PVI however, may not be suitable after cardiac surgery to predict fluid responsiveness.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

26 downloads since deposited on 19 Feb 2019
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Chair in Veterinary Epidemiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Uncontrolled Keywords:Functional hemodynamic parameter; Pleth variability index; Pulse pressure variation; Pulse wave analysis; Stroke volume variation
Language:English
Date:1 December 2018
Deposited On:19 Feb 2019 12:24
Last Modified:24 Feb 2019 06:50
Publisher:BioMed Central
ISSN:1471-2253
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12871-018-0520-x
PubMed ID:29788919

Download