Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

The pathological features of regulated necrosis

Tonnus, Wulf; Meyer, Claudia; Paliege, Alexander; Belavgeni, Alexia; von Mässenhausen, Anne; Bornstein, Stefan R; Hugo, Christian; Becker, Jan Ulrich; Linkermann, Andreas (2019). The pathological features of regulated necrosis. Journal of Pathology, 247(5):697-707.

Abstract

Necrosis of a cell is defined by the loss of its plasma membrane integrity. Morphologically, necrosis occurs in several forms such as coagulative necrosis, colliquative necrosis, caseating necrosis, fibrinoid necrosis, and others. Biochemically, necrosis was demonstrated to represent a number of genetically determined signalling pathways. These include (i) kinase-mediated necroptosis, which depends on receptor interacting protein kinase 3 (RIPK3)-mediated phosphorylation of the pseudokinase mixed lineage kinase domain like (MLKL); (ii) gasdermin-mediated necrosis downstream of inflammasomes, also referred to as pyroptosis; and (iii) an iron-catalysed mechanism of highly specific lipid peroxidation named ferroptosis. Given the molecular understanding of the nature of these pathways, specific antibodies may allow direct detection of regulated necrosis and correlation with morphological features. Necroptosis can be specifically detected by immunohistochemistry and immunofluorescence employing antibodies to phosphorylated MLKL. Likewise, it is possible to generate cleavage-specific antibodies against epitopes in gasdermin protein family members. In ferroptosis, however, specific detection requires quantification of oxidative lipids by mass spectrometry (oxylipidomics). Together with classical cell death markers, such as TUNEL staining and detection of cleaved caspase-3 in apoptotic cells, the extension of the arsenal of necrosis markers will allow pathological detection of specific molecular pathways rather than isolated morphological descriptions. These novel pieces of information will be extraordinarily helpful for clinicians as inhibitors of necroptosis (necrostatins), ferroptosis (ferrostatins), and inflammasomes have emerged in clinical trials. Anatomical pathologists should embrace these novel ancillary tests and the concepts behind them and test their impact on diagnostic precision, prognostication, and the prediction of response to the upcoming anti-necrotic therapies. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Endocrinology and Diabetology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Pathology and Forensic Medicine
Language:English
Date:1 April 2019
Deposited On:19 Mar 2019 13:34
Last Modified:21 Jan 2025 02:35
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0022-3417
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/path.5248
PubMed ID:30714148
Full text not available from this repository.

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
118 citations in Web of Science®
126 citations in Scopus®
Google Scholar™

Altmetrics

Authors, Affiliations, Collaborations

Similar Publications