Header

UZH-Logo

Maintenance Infos

Audio-visuomotor processing in the musician's brain: an ERP study on professional violinists and clarinetists


Proverbio, Alice Mado; Calbi, Marta; Manfredi, Mirella; Zani, Alberto (2014). Audio-visuomotor processing in the musician's brain: an ERP study on professional violinists and clarinetists. Scientific Reports, 4:5866.

Abstract

The temporal dynamics of brain activation during visual and auditory perception of congruent vs. incongruent musical video clips was investigated in 12 musicians from the Milan Conservatory of music and 12 controls. 368 videos of a clarinetist and a violinist playing the same score with their instruments were presented. The sounds were similar in pitch, intensity, rhythm and duration. To produce an audiovisual discrepancy, in half of the trials, the visual information was incongruent with the soundtrack in pitch. ERPs were recorded from 128 sites. Only in musicians for their own instruments was a N400-like negative deflection elicited due to the incongruent audiovisual information. SwLORETA applied to the N400 response identified the areas mediating multimodal motor processing: the prefrontal cortex, the right superior and middle temporal gyrus, the premotor cortex, the inferior frontal and inferior parietal areas, the EBA, somatosensory cortex, cerebellum and SMA. The data indicate the existence of audiomotor mirror neurons responding to incongruent visual and auditory information, thus suggesting that they may encode multimodal representations of musical gestures and sounds. These systems may underlie the ability to learn how to play a musical instrument.

Abstract

The temporal dynamics of brain activation during visual and auditory perception of congruent vs. incongruent musical video clips was investigated in 12 musicians from the Milan Conservatory of music and 12 controls. 368 videos of a clarinetist and a violinist playing the same score with their instruments were presented. The sounds were similar in pitch, intensity, rhythm and duration. To produce an audiovisual discrepancy, in half of the trials, the visual information was incongruent with the soundtrack in pitch. ERPs were recorded from 128 sites. Only in musicians for their own instruments was a N400-like negative deflection elicited due to the incongruent audiovisual information. SwLORETA applied to the N400 response identified the areas mediating multimodal motor processing: the prefrontal cortex, the right superior and middle temporal gyrus, the premotor cortex, the inferior frontal and inferior parietal areas, the EBA, somatosensory cortex, cerebellum and SMA. The data indicate the existence of audiomotor mirror neurons responding to incongruent visual and auditory information, thus suggesting that they may encode multimodal representations of musical gestures and sounds. These systems may underlie the ability to learn how to play a musical instrument.

Statistics

Citations

Dimensions.ai Metrics
18 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

9 downloads since deposited on 04 Mar 2019
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:29 July 2014
Deposited On:04 Mar 2019 14:45
Last Modified:04 Mar 2019 14:46
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/srep05866
PubMed ID:25070060

Download

Download PDF  'Audio-visuomotor processing in the musician's brain: an ERP study on professional violinists and clarinetists'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)