Header

UZH-Logo

Maintenance Infos

Value of a Limited Number of Discharge Observations for Improving Regionalisation: A Large‐Sample Study across the United States


Pool, Sandra; Viviroli, Daniel; Seibert, Jan (2019). Value of a Limited Number of Discharge Observations for Improving Regionalisation: A Large‐Sample Study across the United States. Water Resources Research, 55:363-377.

Abstract

Even in regions considered as densely monitored, most catchments are actually ungauged. Prediction of discharge in ungauged catchments commonly relies on parameter regionalization. While ungauged catchments lack continuous discharge time series, a limited number of observations could still be collected within short field campaigns. Here we analyze the value of such observations for improving parameter regionalization in otherwise ungauged catchments. More specifically, we propose an ensemble modeling approach, where discharge predictions from regionalization with multiple donor catchments are weighted based on the fit between predicted and observed discharge on the dates of the available observations. It was assumed that a total of 3 to 24 observations from a single hydrological year were available as an additional source of information for regionalization. This informed regionalization approach was tested with discharge observations from 10 different hydrological years in a leave‐one‐out cross validation scheme on 579 catchments in the United States using the HBV runoff model. Discharge observations helped to improve the regionalization in up to 94% of the study catchments in 8 out of 10 discharge sampling years. Sampling years characterized by exceptionally high peak discharge, or high annual or winter precipitation were less informative for regionalization. In the least informative years, model efficiency increased with an increasing number of observations. In contrast, in the most informative sampling year, 3 discharge observations provided as much information for regionalization as 24 discharge observations. Overall, discharge observations were most effective in informing regionalization in arid catchments, snow‐dominated catchments, and winter‐precipitation‐dominated catchments.

Abstract

Even in regions considered as densely monitored, most catchments are actually ungauged. Prediction of discharge in ungauged catchments commonly relies on parameter regionalization. While ungauged catchments lack continuous discharge time series, a limited number of observations could still be collected within short field campaigns. Here we analyze the value of such observations for improving parameter regionalization in otherwise ungauged catchments. More specifically, we propose an ensemble modeling approach, where discharge predictions from regionalization with multiple donor catchments are weighted based on the fit between predicted and observed discharge on the dates of the available observations. It was assumed that a total of 3 to 24 observations from a single hydrological year were available as an additional source of information for regionalization. This informed regionalization approach was tested with discharge observations from 10 different hydrological years in a leave‐one‐out cross validation scheme on 579 catchments in the United States using the HBV runoff model. Discharge observations helped to improve the regionalization in up to 94% of the study catchments in 8 out of 10 discharge sampling years. Sampling years characterized by exceptionally high peak discharge, or high annual or winter precipitation were less informative for regionalization. In the least informative years, model efficiency increased with an increasing number of observations. In contrast, in the most informative sampling year, 3 discharge observations provided as much information for regionalization as 24 discharge observations. Overall, discharge observations were most effective in informing regionalization in arid catchments, snow‐dominated catchments, and winter‐precipitation‐dominated catchments.

Statistics

Citations

Altmetrics

Downloads

29 downloads since deposited on 20 Mar 2019
29 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2019
Deposited On:20 Mar 2019 17:15
Last Modified:21 Mar 2019 08:33
Publisher:American Geophysical Union
ISSN:0043-1397
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1029/2018WR023855

Download

Download PDF  'Value of a Limited Number of Discharge Observations for Improving Regionalisation: A Large‐Sample Study across the United States'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher