Header

UZH-Logo

Maintenance Infos

Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering


Abstract

Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding.

Abstract

Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 21 Mar 2019
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry
Language:English
Date:1 December 2019
Deposited On:21 Mar 2019 11:36
Last Modified:21 Mar 2019 12:00
Publisher:Nature Publishing Group
ISSN:2041-1723
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41467-019-08979-4

Download

Download PDF  'Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering'.
Preview
Content: Published Version
Filetype: PDF
Size: 5MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)