Header

UZH-Logo

Maintenance Infos

Temperature-dependent ovariole and testis maturation in the yellow dung fly


Blanckenhorn, Wolf U; Henseler, Cornelia (2005). Temperature-dependent ovariole and testis maturation in the yellow dung fly. Entomologia Experimentalis et Applicata, 116(3):159-165.

Abstract

Temperature is one of the abiotic environmental factors most strongly affecting animal behaviour, physiology, and life history. In insects, lower temperatures generally slow down most physiological processes, reducing growth rate and prolonging the juvenile period. Here, we investigate temperature‐dependent ovariole and testis maturation in the anautogenous yellow dung fly, Scathophaga stercoraria L. (Diptera: Scathophagidae), and relate it to corresponding temperature effects on pre‐adult development time and the adult pre‐reproductive period. Flies were reared in the laboratory at three constant temperatures (18, 22, and 26 °C), and the size of the developing ovarioles and testes (reflecting sperm production) was measured over time (i.e., age). Ovariole size increased asymptotically over the first 12 days of adult life, while the testes continued to fill after day 10. In accordance with the temperature‐size rule, warmer temperatures resulted in smaller ovarioles (eggs) and smaller testes, independent of body size. Warmer temperatures also greatly reduced pre‐adult development time by more than half, from 12 to 25 °C, the larger males always taking 1–3 days longer than the females. Corresponding temperature effects on the adult pre‐reproductive period were small (<1 day between 15 and 25 °C), with males taking 5–6 days and females 10–13 days to first reproduction. Time lost by males during the pre‐adult stage, when ovaries and testes are produced, can thus be more than compensated‐for by time gained during the pre‐reproductive period, when eggs and sperm are produced, so males can nevertheless start reproducing sooner than females.

Abstract

Temperature is one of the abiotic environmental factors most strongly affecting animal behaviour, physiology, and life history. In insects, lower temperatures generally slow down most physiological processes, reducing growth rate and prolonging the juvenile period. Here, we investigate temperature‐dependent ovariole and testis maturation in the anautogenous yellow dung fly, Scathophaga stercoraria L. (Diptera: Scathophagidae), and relate it to corresponding temperature effects on pre‐adult development time and the adult pre‐reproductive period. Flies were reared in the laboratory at three constant temperatures (18, 22, and 26 °C), and the size of the developing ovarioles and testes (reflecting sperm production) was measured over time (i.e., age). Ovariole size increased asymptotically over the first 12 days of adult life, while the testes continued to fill after day 10. In accordance with the temperature‐size rule, warmer temperatures resulted in smaller ovarioles (eggs) and smaller testes, independent of body size. Warmer temperatures also greatly reduced pre‐adult development time by more than half, from 12 to 25 °C, the larger males always taking 1–3 days longer than the females. Corresponding temperature effects on the adult pre‐reproductive period were small (<1 day between 15 and 25 °C), with males taking 5–6 days and females 10–13 days to first reproduction. Time lost by males during the pre‐adult stage, when ovaries and testes are produced, can thus be more than compensated‐for by time gained during the pre‐reproductive period, when eggs and sperm are produced, so males can nevertheless start reproducing sooner than females.

Statistics

Citations

Dimensions.ai Metrics
25 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Insect Science
Uncontrolled Keywords:Insect Science, Ecology, Evolution, Behavior and Systematics
Language:English
Date:1 September 2005
Deposited On:29 Mar 2019 08:16
Last Modified:31 Jul 2020 03:18
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0013-8703
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/j.1570-7458.2005.00316.x

Download

Full text not available from this repository.
View at publisher

Get full-text in a library