Header

UZH-Logo

Maintenance Infos

Temperature effects on egg size and their fitness consequences in the yellow dung fly Scathophaga stercoraria


Blanckenhorn, Wolf U (2000). Temperature effects on egg size and their fitness consequences in the yellow dung fly Scathophaga stercoraria. Evolutionary Ecology, 14(7):627-643.

Abstract

Organisms and parts of an organism like eggs or individual cells developing in colder environments tend to grow bigger. A unifying explanation for this Bergmann's rule extended to ectotherms has not been found, and whether this is an adaptive response or a physiological constraint is debated. The dependence of egg and clutch size on the mother's temperature environment were investigated in the yellow dung fly Scathophaga stercoraria. Smaller eggs were laid at warmer temperatures in the field and the laboratory, where possible confounding variables were controlled for. As clutch size at the same time was unaffected by temperature, this effect was not due to a trade-off between egg size and number. Temperature-dependent egg sizes even persisted within individuals: when females were transferred to a cooler (warmer) environment, they laid third-clutch eggs that were larger (smaller) than their first-clutch eggs. The fitness consequences of these temperature-mediated egg sizes were further investigated in two laboratory experiments. Neither egg and pre-adult survivorship nor larval growth rate were maximized, nor was development time minimized, at the ambient temperature corresponding to the mother's temperature environment. This does not support the beneficial acclimation hypothesis. Instead, this study yielded some, but by no means conclusive indications of best performance by offspring from eggs laid at intermediate temperatures, weakly supporting the optimal temperature hypothesis. In one experiment the smaller eggs laid at 24 °C had reduced survivorship at all ambient temperatures tested. Smaller eggs thus generally performed poorly. The most parsimonious interpretation of these results is that temperature-mediated variation in egg size is a maternal physiological response (perhaps even a constraint) of unclear adaptive value.

Abstract

Organisms and parts of an organism like eggs or individual cells developing in colder environments tend to grow bigger. A unifying explanation for this Bergmann's rule extended to ectotherms has not been found, and whether this is an adaptive response or a physiological constraint is debated. The dependence of egg and clutch size on the mother's temperature environment were investigated in the yellow dung fly Scathophaga stercoraria. Smaller eggs were laid at warmer temperatures in the field and the laboratory, where possible confounding variables were controlled for. As clutch size at the same time was unaffected by temperature, this effect was not due to a trade-off between egg size and number. Temperature-dependent egg sizes even persisted within individuals: when females were transferred to a cooler (warmer) environment, they laid third-clutch eggs that were larger (smaller) than their first-clutch eggs. The fitness consequences of these temperature-mediated egg sizes were further investigated in two laboratory experiments. Neither egg and pre-adult survivorship nor larval growth rate were maximized, nor was development time minimized, at the ambient temperature corresponding to the mother's temperature environment. This does not support the beneficial acclimation hypothesis. Instead, this study yielded some, but by no means conclusive indications of best performance by offspring from eggs laid at intermediate temperatures, weakly supporting the optimal temperature hypothesis. In one experiment the smaller eggs laid at 24 °C had reduced survivorship at all ambient temperatures tested. Smaller eggs thus generally performed poorly. The most parsimonious interpretation of these results is that temperature-mediated variation in egg size is a maternal physiological response (perhaps even a constraint) of unclear adaptive value.

Statistics

Citations

Dimensions.ai Metrics
76 citations in Web of Science®
77 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Language:English
Date:1 September 2000
Deposited On:22 Mar 2019 09:20
Last Modified:31 Jul 2020 03:18
Publisher:Springer
ISSN:0269-7653
OA Status:Closed
Publisher DOI:https://doi.org/10.1023/a:1010911017700

Download

Full text not available from this repository.
View at publisher

Get full-text in a library