Header

UZH-Logo

Maintenance Infos

Scaling of brain compartments to brain size


Jäncke, Lutz; Liem, Franziskus; Mérillat, Susan (2019). Scaling of brain compartments to brain size. NeuroReport, 30(8):573-579.

Abstract

In this study, we examine the relationship between total brain volume (BV) and the volumes of several main brain compartmental (BC) measures (cortical thickness, cortical surface area, corpus callosum, cortical gray matter, normal appearing cerebral white matter (NAWM), amygdala, accumbens, caudate, hippocampus, putamen, pallidum, thalamus, cerebellar gray matter, and cerebellar WM) of physically and cognitively healthy elderly individuals (mean age: 71 years, age range: 65-85 years). The statistical analysis uncovered extremely different relationships between total BV and the aforementioned BC metrics. These relationships ranged from extremely strong (BV explaining 85% of the variability of cerebral WM volume) to a very small relationship (for the caudate volume and the cortical thickness). In addition, cerebral WM and the accumbens volumes scaled out of proportion with BV, whereas most other BC measures scaled less than proportional to BV. Thus, larger brains exhibit relatively larger cerebral NAWM and accumbens volumes than do smaller brains. Cortical gray matter (and most other BC measures), on the other hand, relatively decreases as BV increases, resulting in relatively small cortical gray matter volumes (and relatively small BC measures) for large brains. These relationships are discussed within the context of general allometric scaling principles for the human brain. In addition, possible methodological consequences of analyzing anatomical data on the basis of MRI measurements are also discussed.

Abstract

In this study, we examine the relationship between total brain volume (BV) and the volumes of several main brain compartmental (BC) measures (cortical thickness, cortical surface area, corpus callosum, cortical gray matter, normal appearing cerebral white matter (NAWM), amygdala, accumbens, caudate, hippocampus, putamen, pallidum, thalamus, cerebellar gray matter, and cerebellar WM) of physically and cognitively healthy elderly individuals (mean age: 71 years, age range: 65-85 years). The statistical analysis uncovered extremely different relationships between total BV and the aforementioned BC metrics. These relationships ranged from extremely strong (BV explaining 85% of the variability of cerebral WM volume) to a very small relationship (for the caudate volume and the cortical thickness). In addition, cerebral WM and the accumbens volumes scaled out of proportion with BV, whereas most other BC measures scaled less than proportional to BV. Thus, larger brains exhibit relatively larger cerebral NAWM and accumbens volumes than do smaller brains. Cortical gray matter (and most other BC measures), on the other hand, relatively decreases as BV increases, resulting in relatively small cortical gray matter volumes (and relatively small BC measures) for large brains. These relationships are discussed within the context of general allometric scaling principles for the human brain. In addition, possible methodological consequences of analyzing anatomical data on the basis of MRI measurements are also discussed.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 03 May 2019
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
08 Research Priority Programs > Dynamics of Healthy Aging
Dewey Decimal Classification:150 Psychology
Scopus Subject Areas:Life Sciences > General Neuroscience
Language:English
Date:22 May 2019
Deposited On:03 May 2019 09:12
Last Modified:15 Apr 2020 23:41
Publisher:Lippincott Williams & Wilkins
ISSN:0959-4965
OA Status:Green
Publisher DOI:https://doi.org/10.1097/WNR.0000000000001249
PubMed ID:30950937

Download

Green Open Access

Download PDF  'Scaling of brain compartments to brain size'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 262kB
View at publisher
Publisher License