Header

UZH-Logo

Maintenance Infos

Are Early Triassic extinction events associated with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction


Hammer, Øyvind; Jones, Morgan T; Schneebeli-Hermann, Elke; Hansen, Bitten Bolvig; Bucher, Hugo (2019). Are Early Triassic extinction events associated with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction. Earth-Science Reviews, 195:179-190.

Abstract

High concentrations of mercury, possibly connected with widespread volcanism of the Siberian Traps, have previously been associated with the Smithian/Spathian (Early Triassic) boundary (SSB) in the Sverdrup Basin, Tethyan sections in India and China, as well as with a shallow-water record in western Spitsbergen. We confirm this Hg/TOC anomaly in the deeper water record at Wallenbergfjellet, central Spitsbergen. However, both paleontological age control and carbon isotopes indicate that the Hg anomaly occurred mainly within strata of middle Smithian age. Therefore, this Hg anomaly is unlikely to be directly and causally related to mechanisms contributing to the late Smithian global extinction of nektonic faunas. The TOC and trace element data suggest generally more oxygenated conditions during the Smithian compared to the Spathian, which is at odds with the hypothesis that oxygen depletion may have been a global kill mechanism for the SSB extinction. Further work is needed to assess if precise timing and paleogeographic distribution of anoxia shows any consistent pattern or not during the Smithian and Spathian. The very abrupt lower limb of the positive carbon isotope excursion (CIE) and the coarser grain size immediately below the boundary between the Lusitaniadalen Member and the Vendomdalen Member indicate a substantial stratigraphic gap of latest Smithian age, a previously neglected signal shared with many other boreal SSB sections. Ammonoid age control also indicates that the onset of the late Smithian gap in the high latitudes was earlier than in the Tropics. The gradual end of the positive CIE contrasts with the frequent spike shape observed in tropical shelf records and is definitively earliest Spathian in age. The middle Smithian Hg anomaly in the Boreal record is only visible in the Hg/TOC values, and is associated with a possible shift in organic matter type from terrestrial to marine in the case of Spitsbergen. This suggests that the middle Smithian Hg/TOC anomaly in Spitsbergen may not unequivocally originate from volcanism, and calls for additional caution before interpreting Hg spikes as a volcanic proxy.

Abstract

High concentrations of mercury, possibly connected with widespread volcanism of the Siberian Traps, have previously been associated with the Smithian/Spathian (Early Triassic) boundary (SSB) in the Sverdrup Basin, Tethyan sections in India and China, as well as with a shallow-water record in western Spitsbergen. We confirm this Hg/TOC anomaly in the deeper water record at Wallenbergfjellet, central Spitsbergen. However, both paleontological age control and carbon isotopes indicate that the Hg anomaly occurred mainly within strata of middle Smithian age. Therefore, this Hg anomaly is unlikely to be directly and causally related to mechanisms contributing to the late Smithian global extinction of nektonic faunas. The TOC and trace element data suggest generally more oxygenated conditions during the Smithian compared to the Spathian, which is at odds with the hypothesis that oxygen depletion may have been a global kill mechanism for the SSB extinction. Further work is needed to assess if precise timing and paleogeographic distribution of anoxia shows any consistent pattern or not during the Smithian and Spathian. The very abrupt lower limb of the positive carbon isotope excursion (CIE) and the coarser grain size immediately below the boundary between the Lusitaniadalen Member and the Vendomdalen Member indicate a substantial stratigraphic gap of latest Smithian age, a previously neglected signal shared with many other boreal SSB sections. Ammonoid age control also indicates that the onset of the late Smithian gap in the high latitudes was earlier than in the Tropics. The gradual end of the positive CIE contrasts with the frequent spike shape observed in tropical shelf records and is definitively earliest Spathian in age. The middle Smithian Hg anomaly in the Boreal record is only visible in the Hg/TOC values, and is associated with a possible shift in organic matter type from terrestrial to marine in the case of Spitsbergen. This suggests that the middle Smithian Hg/TOC anomaly in Spitsbergen may not unequivocally originate from volcanism, and calls for additional caution before interpreting Hg spikes as a volcanic proxy.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

23 downloads since deposited on 15 May 2019
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Paleontological Institute and Museum
Dewey Decimal Classification:560 Fossils & prehistoric life
Scopus Subject Areas:Physical Sciences > General Earth and Planetary Sciences
Uncontrolled Keywords:General Earth and Planetary Sciences
Language:English
Date:1 August 2019
Deposited On:15 May 2019 12:10
Last Modified:16 Apr 2021 00:01
Publisher:Elsevier
ISSN:0012-8252
OA Status:Green
Publisher DOI:https://doi.org/10.1016/j.earscirev.2019.04.016

Download

Green Open Access