Header

UZH-Logo

Maintenance Infos

Living with the enemy: Facilitating amphibian coexistence with disease


Scheele, Ben C; Foster, Claire N; Hunter, David A; Lindenmayer, David B; Schmidt, Benedikt R; Heard, Geoffrey W (2019). Living with the enemy: Facilitating amphibian coexistence with disease. Biological Conservation, 236:52-59.

Abstract

Globalization has facilitated the emergence and spread of novel pathogens, representing a major conservation challenge. The amphibian disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis, epitomizes this unprecedented threat, being responsible for declines and extinctions of amphibians worldwide. Chytridiomycosis has had both immediate catastrophic impacts during initial epidemics, as well as more variable, ongoing effects as the pathogen transitions to endemicity in its new distribution. Where B. dendrobatidis is now endemic, effective management actions are needed to prevent further extinctions of species. Yet, after nearly 20 years of research, management solutions remain rare or largely untested. Here, we highlight the potential for mitigation strategies focused on the environmental part of the host-pathogen-environment triangle to facilitate coexistence with the pathogen. We provide an extensive literature review to demonstrate that environmental conditions and demographic processes can strongly mediate the impact of B. dendrobatidis, and the capacity of amphibian populations to withstand disease-associated mortality. In particular, novel management approaches to achieve coexistence could focus on manipulating environmental conditions to decrease suitability for B. dendrobatidis and/or increase demographic resilience to disease-associated mortality. Such strategies include translocation to, or creation of, environmental refuges, and habitat manipulation to increase recruitment and offset elevated adult mortality. We argue that responding to chytridiomycosis requires a conceptual readjustment of our baselines to recognize that endemic B. dendrobatidis infection is the ‘new normal’ in surviving populations of many susceptible amphibian species. We conclude with recommendations for research and management actions that can help achieve coexistence of amphibian species susceptible to B. dendrobatidis.

Abstract

Globalization has facilitated the emergence and spread of novel pathogens, representing a major conservation challenge. The amphibian disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis, epitomizes this unprecedented threat, being responsible for declines and extinctions of amphibians worldwide. Chytridiomycosis has had both immediate catastrophic impacts during initial epidemics, as well as more variable, ongoing effects as the pathogen transitions to endemicity in its new distribution. Where B. dendrobatidis is now endemic, effective management actions are needed to prevent further extinctions of species. Yet, after nearly 20 years of research, management solutions remain rare or largely untested. Here, we highlight the potential for mitigation strategies focused on the environmental part of the host-pathogen-environment triangle to facilitate coexistence with the pathogen. We provide an extensive literature review to demonstrate that environmental conditions and demographic processes can strongly mediate the impact of B. dendrobatidis, and the capacity of amphibian populations to withstand disease-associated mortality. In particular, novel management approaches to achieve coexistence could focus on manipulating environmental conditions to decrease suitability for B. dendrobatidis and/or increase demographic resilience to disease-associated mortality. Such strategies include translocation to, or creation of, environmental refuges, and habitat manipulation to increase recruitment and offset elevated adult mortality. We argue that responding to chytridiomycosis requires a conceptual readjustment of our baselines to recognize that endemic B. dendrobatidis infection is the ‘new normal’ in surviving populations of many susceptible amphibian species. We conclude with recommendations for research and management actions that can help achieve coexistence of amphibian species susceptible to B. dendrobatidis.

Statistics

Citations

Dimensions.ai Metrics
38 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Physical Sciences > Nature and Landscape Conservation
Uncontrolled Keywords:amphibian, conservation, disease, chytridiomycosis
Language:English
Date:1 August 2019
Deposited On:24 May 2019 08:50
Last Modified:22 Nov 2023 02:36
Publisher:Elsevier
ISSN:0006-3207
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.biocon.2019.05.032
Full text not available from this repository.