Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Mechanistically Driven Control over Cubane Oxo Cluster Catalysts

Song, Fangyuan; Al-Ameed, Karrar; Schilling, Mauro; Fox, Thomas; Luber, Sandra; Patzke, Greta R (2019). Mechanistically Driven Control over Cubane Oxo Cluster Catalysts. Journal of the American Chemical Society, 141(22):8846-8857.

Abstract

Predictive and mechanistically driven access to polynuclear oxo clusters and related materials remains a grand challenge of inorganic chemistry. We here introduce a novel strategy for synthetic control over highly sought-after transition metal {M4O4} cubanes. They attract interest as molecular water oxidation catalysts that combine features of both heterogeneous oxide catalysts and nature’s cuboidal {CaMn4O5} center of photosystem II. For the first time, we demonstrate the outstanding structure-directing effect of straightforward inorganic counteranions in solution on the self-assembly of oxo clusters. We introduce a selective counteranion toolbox for the controlled assembly of di(2-pyridyl) ketone (dpk) with M(OAc)2 (M = Co, Ni) precursors into different cubane types. Perchlorate anions provide selective access to type 2 cubanes with the characteristic {H2O-M2(OR)2-OH2} edge-site, such as [Co4(dpy-C{OH}O)4(OAc)2(H2O)2](ClO4)2. Type 1 cubanes with separated polar faces [Co4(dpy-C{OH}O)4(L2)4]n+ (L2 = OAc, Cl, or OAc and H2O) can be tuned with a wide range of other counteranions. The combination of these counteranion sets with Ni(OAc)2 as precursor selectively produces type 2 Co/Ni-mixed or {Ni4O4} cubanes. Systematic mechanistic experiments in combination with computational studies provide strong evidence for type 2 cubane formation through reaction of the key dimeric building block [M2(dpy-C{OH}O)2(H2O)4]2+ with monomers, such as [Co(dpy-C{OH}O)(OAc)(H2O)3]. Furthermore, both experiments and DFT calculations support an energetically favorable type 1 cubane formation pathway via direct head-to-head combination of two [Co2(dpy-C{OH}O)2(OAc)2(H2O)2] dimers. Finally, the visible-light-driven water oxidation activity of type 1 and 2 cubanes with tuned ligand environments was assessed. We pave the way to efficient design concepts in coordination chemistry through ionic control over cluster assembly pathways. Our comprehensive strategy demonstrates how retrosynthetic analyses can be implemented with readily available assembly directing counteranions to provide rapid access to tuned molecular materials.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > Catalysis
Physical Sciences > General Chemistry
Life Sciences > Biochemistry
Physical Sciences > Colloid and Surface Chemistry
Uncontrolled Keywords:Colloid and Surface Chemistry, Biochemistry, General Chemistry, Catalysis
Language:English
Date:5 June 2019
Deposited On:04 Jun 2019 13:35
Last Modified:21 Sep 2024 01:35
Publisher:American Chemical Society (ACS)
ISSN:0002-7863
OA Status:Green
Publisher DOI:https://doi.org/10.1021/jacs.9b01356
Project Information:
  • Funder: SNSF
  • Grant ID: PP00P2_170667
  • Project Title: In Silico Investigation and Design of Bio-inspired Catalysts for Water Splitting
  • Funder: SNSF
  • Grant ID: CRSII2_160801
  • Project Title: Photocatalytic Processes at Solvated Interfaces

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

162 downloads since deposited on 04 Jun 2019
45 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications