Header

UZH-Logo

Maintenance Infos

Fast influencers in complex networks


Zhou, Fang; Lü, Linyuan; Mariani, Manuel (2019). Fast influencers in complex networks. Communications in Nonlinear Science and Numerical Simulation, 74:69-83.

Abstract

Influential nodes in complex networks are typically defined as those nodes that maximize the asymptotic reach of a spreading process of interest. However, for practical applications such as viral marketing and online information spreading, one is often interested in maximizing the reach of the process in a short amount of time. The traditional definition of influencers in network-related studies from diverse research fields narrows down the focus to the late-time state of the spreading processes, leaving the following question unsolved: which nodes are able to initiate large-scale spreading processes, in a limited amount of time? Here, we find that there is a fundamental difference between the nodes – which we call “fast influencers” – that initiate the largest-reach processes in a short amount of time, and the traditional, “late-time” influencers. Stimulated by this observation, we provide an extensive benchmarking of centrality metrics with respect to their ability to identify both the fast and late-time influencers. We find that local network properties can be used to uncover the fast influencers. In particular, a parsimonious, local centrality metric (which we call social capital) achieves optimal or nearly-optimal performance in the fast influencer identification for all the analyzed empirical networks. Local metrics tend to be also competitive in the traditional, late-time influencer identification task.

Abstract

Influential nodes in complex networks are typically defined as those nodes that maximize the asymptotic reach of a spreading process of interest. However, for practical applications such as viral marketing and online information spreading, one is often interested in maximizing the reach of the process in a short amount of time. The traditional definition of influencers in network-related studies from diverse research fields narrows down the focus to the late-time state of the spreading processes, leaving the following question unsolved: which nodes are able to initiate large-scale spreading processes, in a limited amount of time? Here, we find that there is a fundamental difference between the nodes – which we call “fast influencers” – that initiate the largest-reach processes in a short amount of time, and the traditional, “late-time” influencers. Stimulated by this observation, we provide an extensive benchmarking of centrality metrics with respect to their ability to identify both the fast and late-time influencers. We find that local network properties can be used to uncover the fast influencers. In particular, a parsimonious, local centrality metric (which we call social capital) achieves optimal or nearly-optimal performance in the fast influencer identification for all the analyzed empirical networks. Local metrics tend to be also competitive in the traditional, late-time influencer identification task.

Statistics

Citations

Altmetrics

Downloads

3 downloads since deposited on 13 Jun 2019
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Business Administration
08 Research Priority Programs > Social Networks
Dewey Decimal Classification:330 Economics
Language:English
Date:6 March 2019
Deposited On:13 Jun 2019 07:32
Last Modified:08 Oct 2019 13:04
Publisher:Elsevier
ISSN:1007-5704
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.cnsns.2019.01.032
Other Identification Number:merlin-id:17704

Download