Abstract
In this paper we study certain counting functions which represent the numbers of solutions of systems of linear inequalities arising in the theory of Diophantine approximation. We develop a method that allows us to explain the random-like behavior that these functions exhibit and prove a central limit theorem for them. Our approach is based on a quantitative study of higher-order correlations for functions defined on the space of lattices and a novel technique for estimating cumulants of Siegel transforms.