Header

UZH-Logo

Maintenance Infos

Association between prefrontal glutamine levels and neuroticism determined using proton magnetic resonance spectroscopy


Hasler, Gregor; Buchmann, Andreas; Haynes, Melanie; Müller, Sabrina Theresia; Ghisleni, Carmen; Brechbühl, Sarela; Tuura, Ruth (2019). Association between prefrontal glutamine levels and neuroticism determined using proton magnetic resonance spectroscopy. Translational Psychiatry, 9(1):170.

Abstract

There is growing evidence for GABA and glutamate-glutamine dysfunction in the pathogenesis of mood and anxiety disorders. It is important to study this pathology in the early phases of the illness in order to develop new approaches to secondary prevention. New magnetic resonance spectroscopy (MRS) measures allow determining glutamine, the principal metabolite of synaptic glutamate that is directly related to glutamate levels in the synaptic cleft, as well as glutamate and GABA. In contrast to previous investigations, this study used community-based recruitment methods and a combined categorical and dimensional approach to psychopathology. In the study protocol, neuroticism was defined as the primary outcome. Neuroticism shares a large proportion of its genetic variance with mood and anxiety disorders. We examined young adult participants recruited from the general population in a cross-sectional study using 3-T 1H-MRS with one voxel in the left dorsolateral prefrontal cortex (DLPFC). The total sample of N = 110 (61 females) included 18 individuals suffering from MDD and 19 individuals suffering from DSM-IV anxiety disorders. We found that glutamine and glutamine-to-glutamate ratio were correlated with neuroticism in the whole sample (r = 0.263, p = 0.005, and n = 110; respectively, r = 0.252, p = 0.008, and n = 110), even when controlling for depression and anxiety disorder diagnoses (for glutamine: beta = 0.220, p = 0.047, and n = 110). Glutamate and GABA were not significantly correlated with neuroticism (r = 0.087, p = 0.365, and n = 110; r = -0.044, p = 0.645, and n = 110). Lack of self-confidence and emotional instability were the clinical correlates of glutamate-glutamine dysfunction. In conclusion, this study suggests that prefrontal glutamine is increased in early phases of mood and anxiety disorders. Further understanding of glutamate-glutamine dysfunction in stress-related disorders may lead to new therapeutic strategies to prevent and treat these disorders.

Abstract

There is growing evidence for GABA and glutamate-glutamine dysfunction in the pathogenesis of mood and anxiety disorders. It is important to study this pathology in the early phases of the illness in order to develop new approaches to secondary prevention. New magnetic resonance spectroscopy (MRS) measures allow determining glutamine, the principal metabolite of synaptic glutamate that is directly related to glutamate levels in the synaptic cleft, as well as glutamate and GABA. In contrast to previous investigations, this study used community-based recruitment methods and a combined categorical and dimensional approach to psychopathology. In the study protocol, neuroticism was defined as the primary outcome. Neuroticism shares a large proportion of its genetic variance with mood and anxiety disorders. We examined young adult participants recruited from the general population in a cross-sectional study using 3-T 1H-MRS with one voxel in the left dorsolateral prefrontal cortex (DLPFC). The total sample of N = 110 (61 females) included 18 individuals suffering from MDD and 19 individuals suffering from DSM-IV anxiety disorders. We found that glutamine and glutamine-to-glutamate ratio were correlated with neuroticism in the whole sample (r = 0.263, p = 0.005, and n = 110; respectively, r = 0.252, p = 0.008, and n = 110), even when controlling for depression and anxiety disorder diagnoses (for glutamine: beta = 0.220, p = 0.047, and n = 110). Glutamate and GABA were not significantly correlated with neuroticism (r = 0.087, p = 0.365, and n = 110; r = -0.044, p = 0.645, and n = 110). Lack of self-confidence and emotional instability were the clinical correlates of glutamate-glutamine dysfunction. In conclusion, this study suggests that prefrontal glutamine is increased in early phases of mood and anxiety disorders. Further understanding of glutamate-glutamine dysfunction in stress-related disorders may lead to new therapeutic strategies to prevent and treat these disorders.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

30 downloads since deposited on 10 Jan 2020
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Psychiatry and Mental Health
Life Sciences > Cellular and Molecular Neuroscience
Life Sciences > Biological Psychiatry
Language:English
Date:18 June 2019
Deposited On:10 Jan 2020 09:02
Last Modified:15 Apr 2020 23:52
Publisher:Nature Publishing Group
ISSN:2158-3188
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41398-019-0500-z
PubMed ID:31213596

Download

Gold Open Access

Download PDF  'Association between prefrontal glutamine levels and neuroticism determined using proton magnetic resonance spectroscopy'.
Preview
Content: Published Version
Filetype: PDF
Size: 712kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)