Header

UZH-Logo

Maintenance Infos

Principles of Ecology Revisited: Integrating Information and Ecological Theories for a More Unified Science


O'Connor, Mary I; Pennell, Matthew W; Altermatt, Florian; Matthews, Blake; Melián, Carlos J; Gonzalez, Andrew (2019). Principles of Ecology Revisited: Integrating Information and Ecological Theories for a More Unified Science. Frontiers in Ecology and Evolution, 7:219.

Abstract

The persistence of ecological systems in changing environments requires energy, materials, and information. Although the importance of information to ecological function has been widely recognized, the fundamental principles of ecological science as commonly expressed do not reflect this central role of information processing. We articulate five fundamental principles of ecology that integrate information with energy and material constraints across scales of organization in living systems. We show how these principles outline new theoretical and empirical research challenges, and offer one novel attempt to incorporate them in a theoretical model. To provide adequate background for the principles, we review major concepts and identify common themes and key differences in information theories spanning physics, biology and semiotics. We structured our review around a series of questions about the role information may play in ecological systems: (i) what is information? (ii) how is information related to uncertainty? (iii) what is information processing? (iv) does information processing link ecological systems across scales? We highlight two aspects of information that capture its dual roles: syntactic information defining the processes that encode, filter and process information stored in biological structure and semiotic information associated with structures and their context. We argue that the principles of information in living systems promote a unified approach to understanding living systems in terms of first principles of biology and physics, and promote much needed theoretical and empirical advances in ecological research to unify understanding across disciplines and scales.

Abstract

The persistence of ecological systems in changing environments requires energy, materials, and information. Although the importance of information to ecological function has been widely recognized, the fundamental principles of ecological science as commonly expressed do not reflect this central role of information processing. We articulate five fundamental principles of ecology that integrate information with energy and material constraints across scales of organization in living systems. We show how these principles outline new theoretical and empirical research challenges, and offer one novel attempt to incorporate them in a theoretical model. To provide adequate background for the principles, we review major concepts and identify common themes and key differences in information theories spanning physics, biology and semiotics. We structured our review around a series of questions about the role information may play in ecological systems: (i) what is information? (ii) how is information related to uncertainty? (iii) what is information processing? (iv) does information processing link ecological systems across scales? We highlight two aspects of information that capture its dual roles: syntactic information defining the processes that encode, filter and process information stored in biological structure and semiotic information associated with structures and their context. We argue that the principles of information in living systems promote a unified approach to understanding living systems in terms of first principles of biology and physics, and promote much needed theoretical and empirical advances in ecological research to unify understanding across disciplines and scales.

Statistics

Citations

Dimensions.ai Metrics
31 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1075 downloads since deposited on 26 Jul 2019
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
08 Research Priority Programs > Global Change and Biodiversity
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Physical Sciences > Ecology
Uncontrolled Keywords:information theory, semiotic, entropy, organization, first principles, ecology, evolution
Language:English
Date:18 June 2019
Deposited On:26 Jul 2019 13:00
Last Modified:22 Sep 2023 01:43
Publisher:Frontiers Research Foundation
ISSN:2296-701X
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fevo.2019.00219
Official URL:https://www.frontiersin.org/articles/10.3389/fevo.2019.00219/full
Project Information:
  • : FunderSNSF
  • : Grant IDPP00P3_179089
  • : Project TitleBridging biodiversity and ecosystem functioning: a meta-ecosystem perspective
  • : FunderSNSF
  • : Grant ID31003A_173074
  • : Project TitleRiverDNA: uncovering fundamental biodiversity in riverine systems using environmental DNA
  • : FunderUniversity of Zurich Research Priority Programme URPP Global Change and Biodiversity
  • : Grant IDU-704-04-15
  • : Project TitleToward a better integration of evolution and community ecology
  • : Project Websitehttps://www.gcb.uzh.ch/en/Research/Phase-II-Projects/Landscapes/Project-2-Florian-Altermatt.html
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)