Header

UZH-Logo

Maintenance Infos

5-Year Prognostic Value of Quantitative Versus Visual MPI in Subtle Perfusion Defects: Results From REFINE SPECT


Abstract

OBJECTIVES
This study compared the ability of automated myocardial perfusion imaging analysis to predict major adverse cardiac events (MACE) to that of visual analysis.
BACKGROUND
Quantitative analysis has not been compared with clinical visual analysis in prognostic studies.
METHODS
A total of 19,495 patients from the multicenter REFINE SPECT (REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT) study (64 ± 12 years of age, 56% males) undergoing stress Tc-99m-labeled single-photon emission computed tomography (SPECT) myocardial perfusion imaging were followed for 4.5 ± 1.7 years for MACE. Perfusion abnormalities were assessed visually and categorized as normal, probably normal, equivocal, or abnormal. Stress total perfusion deficit (TPD), quantified automatically, was categorized as TPD = 0%, TPD >0% to <1%, ≤1% to <3%, ≤3% to <5%, ≤5% to ≤10%, or TPD >10%. MACE consisted of death, nonfatal myocardial infarction, unstable angina, or late revascularization (>90 days). Kaplan-Meier and Cox proportional hazards analyses were performed to test the performance of visual and quantitative assessments in predicting MACE.
RESULTS
During follow-up examinations, 2,760 (14.2%) MACE occurred. MACE rates increased with worsening of visual assessments, that is, the rate for normal MACE was 2.0%, 3.2% for probably normal, 4.2% for equivocal, and 7.4% for abnormal (all p < 0.001). MACE rates increased with increasing stress TPD from 1.3% for the TPD category of 0% to 7.8% for the TPD category of >10% (p < 0.0001). The adjusted hazard ratio (HR) for MACE increased even in equivocal assessment (HR: 1.56; 95% confidence interval [CI]: 1.37 to 1.78) and in the TPD category of ≤3% to <5% (HR: 1.74; 95% CI: 1.41 to 2.14; all p < 0.001). The rate of MACE in patients visually assessed as normal still increased from 1.3% (TPD = 0%) to 3.4% (TPD ≥5%) (p < 0.0001).
CONCLUSIONS
Quantitative analysis allows precise granular risk stratification in comparison to visual reading, even for cases with normal clinical reading.

Abstract

OBJECTIVES
This study compared the ability of automated myocardial perfusion imaging analysis to predict major adverse cardiac events (MACE) to that of visual analysis.
BACKGROUND
Quantitative analysis has not been compared with clinical visual analysis in prognostic studies.
METHODS
A total of 19,495 patients from the multicenter REFINE SPECT (REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT) study (64 ± 12 years of age, 56% males) undergoing stress Tc-99m-labeled single-photon emission computed tomography (SPECT) myocardial perfusion imaging were followed for 4.5 ± 1.7 years for MACE. Perfusion abnormalities were assessed visually and categorized as normal, probably normal, equivocal, or abnormal. Stress total perfusion deficit (TPD), quantified automatically, was categorized as TPD = 0%, TPD >0% to <1%, ≤1% to <3%, ≤3% to <5%, ≤5% to ≤10%, or TPD >10%. MACE consisted of death, nonfatal myocardial infarction, unstable angina, or late revascularization (>90 days). Kaplan-Meier and Cox proportional hazards analyses were performed to test the performance of visual and quantitative assessments in predicting MACE.
RESULTS
During follow-up examinations, 2,760 (14.2%) MACE occurred. MACE rates increased with worsening of visual assessments, that is, the rate for normal MACE was 2.0%, 3.2% for probably normal, 4.2% for equivocal, and 7.4% for abnormal (all p < 0.001). MACE rates increased with increasing stress TPD from 1.3% for the TPD category of 0% to 7.8% for the TPD category of >10% (p < 0.0001). The adjusted hazard ratio (HR) for MACE increased even in equivocal assessment (HR: 1.56; 95% confidence interval [CI]: 1.37 to 1.78) and in the TPD category of ≤3% to <5% (HR: 1.74; 95% CI: 1.41 to 2.14; all p < 0.001). The rate of MACE in patients visually assessed as normal still increased from 1.3% (TPD = 0%) to 3.4% (TPD ≥5%) (p < 0.0001).
CONCLUSIONS
Quantitative analysis allows precise granular risk stratification in comparison to visual reading, even for cases with normal clinical reading.

Statistics

Citations

Dimensions.ai Metrics
12 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 31 Jul 2019
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Radiology, Nuclear Medicine and Imaging
Health Sciences > Cardiology and Cardiovascular Medicine
Language:English
Date:1 March 2020
Deposited On:31 Jul 2019 13:14
Last Modified:29 Jul 2020 11:02
Publisher:Elsevier
ISSN:1876-7591
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.jcmg.2019.02.028
PubMed ID:31202740

Download

Closed Access: Download allowed only for UZH members