Header

UZH-Logo

Maintenance Infos

Mechanism of 17β-estradiol stimulated integration of human mesenchymal stem cells in heart tissue


Mihai, Maria Cristina; Popa, Mirel Adrian; Suica, Viorel Iulian; Antohe, Felicia; Jackson, Edwin K; Simionescu, Maya; Dubey, Raghvendra K (2019). Mechanism of 17β-estradiol stimulated integration of human mesenchymal stem cells in heart tissue. Journal of Molecular and Cellular Cardiology, 133:115-124.

Abstract

Scarcity of gender specific donor hearts highlights the importance of mesenchymal stem cells (MSCs) as a therapeutic tool for heart repair. However, inefficient incorporation, retention, and activity of MSCs in cardiac tissue remain an obstacle. Since surges in follicular estradiol (E2; μmolar-range) trigger tissue remodeling (e.g. ovulation) and E2 exerts beneficial actions on the cardiovascular system, we hypothesized that E2 may promote/improve MSC-mediated cardiac repair processes. Using Wharton's jelly (WJ)-derived MSCs we assessed the effects of E2 on MSC proliferation, directed migration, and engraftment in murine heart slices (using xCELLigence real-time cell-impedance system, DNA quantification, and microscopy) and on MSC-induced angiogenesis in vivo (matrigel plug assay). Protein expression was assessed by Western blotting, ELISA/Luminex, and proteomic analysis; whereas mRNA expression was assessed by qRT-PCR. MSCs expressed estrogen receptors (ERs) -alpha and -beta. E2 promoted MSC proliferation and up-regulated mRNA and protein expression of ER-alpha, ER-beta, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase (MMP) -9, yet down-regulated MMP-2 expression. Moreover, E2 up-regulated expression of vascular endothelial growth factor (VEGF)-A, VEGFR-2, vascular cell adhesion protein-1 (VCAM-1), and angiogenin (ANG) and stimulated nitric oxide (NO) production via ER. Proteomic analysis of MSCs showed that E2 up-regulated 47 proteins, down-regulated 7 proteins, and increased the expression of key biochemical components/pathways involved in tissue repair. In MSCs co-cultured with murine heart-slices, E2 significantly induced MSC migration in an ER-alpha-dependent fashion and significantly increased the secretion of MMP-2, MMP-9, ANG, and VEGF. In an in vivo matrigel assay, E2-treated MSCs increased angiogenesis and hemoglobin content. In conclusion, E2-treatment increases the incorporation of MSCs in heart slices and promotes MSC-induced angiogenesis. These beneficial effects are mediated via increases in molecules/pathways involved in tissue remodeling and angiogenesis. We speculate that E2 may enhance MSC ability to repair/regenerate cardiac tissue.

Abstract

Scarcity of gender specific donor hearts highlights the importance of mesenchymal stem cells (MSCs) as a therapeutic tool for heart repair. However, inefficient incorporation, retention, and activity of MSCs in cardiac tissue remain an obstacle. Since surges in follicular estradiol (E2; μmolar-range) trigger tissue remodeling (e.g. ovulation) and E2 exerts beneficial actions on the cardiovascular system, we hypothesized that E2 may promote/improve MSC-mediated cardiac repair processes. Using Wharton's jelly (WJ)-derived MSCs we assessed the effects of E2 on MSC proliferation, directed migration, and engraftment in murine heart slices (using xCELLigence real-time cell-impedance system, DNA quantification, and microscopy) and on MSC-induced angiogenesis in vivo (matrigel plug assay). Protein expression was assessed by Western blotting, ELISA/Luminex, and proteomic analysis; whereas mRNA expression was assessed by qRT-PCR. MSCs expressed estrogen receptors (ERs) -alpha and -beta. E2 promoted MSC proliferation and up-regulated mRNA and protein expression of ER-alpha, ER-beta, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase (MMP) -9, yet down-regulated MMP-2 expression. Moreover, E2 up-regulated expression of vascular endothelial growth factor (VEGF)-A, VEGFR-2, vascular cell adhesion protein-1 (VCAM-1), and angiogenin (ANG) and stimulated nitric oxide (NO) production via ER. Proteomic analysis of MSCs showed that E2 up-regulated 47 proteins, down-regulated 7 proteins, and increased the expression of key biochemical components/pathways involved in tissue repair. In MSCs co-cultured with murine heart-slices, E2 significantly induced MSC migration in an ER-alpha-dependent fashion and significantly increased the secretion of MMP-2, MMP-9, ANG, and VEGF. In an in vivo matrigel assay, E2-treated MSCs increased angiogenesis and hemoglobin content. In conclusion, E2-treatment increases the incorporation of MSCs in heart slices and promotes MSC-induced angiogenesis. These beneficial effects are mediated via increases in molecules/pathways involved in tissue remodeling and angiogenesis. We speculate that E2 may enhance MSC ability to repair/regenerate cardiac tissue.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 08 Aug 2019
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Reproductive Endocrinology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Molecular Biology
Health Sciences > Cardiology and Cardiovascular Medicine
Uncontrolled Keywords:Molecular Biology, Cardiology and Cardiovascular Medicine
Language:English
Date:1 August 2019
Deposited On:08 Aug 2019 09:29
Last Modified:29 Jul 2020 11:02
Publisher:Elsevier
ISSN:0022-2828
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.yjmcc.2019.06.007

Download

Closed Access: Download allowed only for UZH members