Header

UZH-Logo

Maintenance Infos

Ultrafast broadband circular dichroism in the deep ultraviolet


Oppermann, Malte; Bauer, Benjamin; Rossi, Thomas; Zinna, Francesco; Helbing, Jan; Lacour, Jérôme; Chergui, Majed (2019). Ultrafast broadband circular dichroism in the deep ultraviolet. Optica, 6(1):56.

Abstract

The measurement of chirality and its temporal evolution are crucial for the understanding of a large range of biological functions and chemical reactions. Steady-state circular dichroism (CD) is a standard analytical tool for measuring chirality in chemistry and biology. Nevertheless, its push into the ultrafast time domain and in the deep-ultraviolet has remained a challenge, with only some isolated reports of subnanosecond CD. Here, we present a broadband time-resolved CD spectrometer in the deep ultraviolet (UV) spectral range with femtosecond time resolution. The setup employs a photoelastic modulator to achieve shot-to-shot polarization switching of a 20 kHz pulse train of broadband femtosecond deep-UV pulses (250–370 nm). The resulting sequence of alternating left- and right-circularly polarized probe pulses is employed in a pump-probe scheme with shot-to-shot dispersive detection and thus allows for the acquisition of broadband CD spectra of ground- and excited-state species. Through polarization scrambling of the probe pulses prior to detection, artifact-free static and transient CD spectra of enantiopure $[Ru(bpy)_3 ]^2^+$ are successfully recorded with a sensitivity of <2 × $10^-^5$ OD (≈0.7 mdeg). Due to its broadband deep-UV detection with unprecedented sensitivity, the measurement of ultrafast chirality changes in biological systems with amino-acid residues and peptides and of DNA oligomers is now feasible.

Abstract

The measurement of chirality and its temporal evolution are crucial for the understanding of a large range of biological functions and chemical reactions. Steady-state circular dichroism (CD) is a standard analytical tool for measuring chirality in chemistry and biology. Nevertheless, its push into the ultrafast time domain and in the deep-ultraviolet has remained a challenge, with only some isolated reports of subnanosecond CD. Here, we present a broadband time-resolved CD spectrometer in the deep ultraviolet (UV) spectral range with femtosecond time resolution. The setup employs a photoelastic modulator to achieve shot-to-shot polarization switching of a 20 kHz pulse train of broadband femtosecond deep-UV pulses (250–370 nm). The resulting sequence of alternating left- and right-circularly polarized probe pulses is employed in a pump-probe scheme with shot-to-shot dispersive detection and thus allows for the acquisition of broadband CD spectra of ground- and excited-state species. Through polarization scrambling of the probe pulses prior to detection, artifact-free static and transient CD spectra of enantiopure $[Ru(bpy)_3 ]^2^+$ are successfully recorded with a sensitivity of <2 × $10^-^5$ OD (≈0.7 mdeg). Due to its broadband deep-UV detection with unprecedented sensitivity, the measurement of ultrafast chirality changes in biological systems with amino-acid residues and peptides and of DNA oligomers is now feasible.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 08 Aug 2019
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:20 January 2019
Deposited On:08 Aug 2019 12:08
Last Modified:09 Aug 2019 07:31
Publisher:Optical Society of America
ISSN:2334-2536
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1364/optica.6.000056

Download