Abstract
We present an implementation of WZjj production via vector-boson fusion in the POWHEG BOX, a public tool for the matching of next-to-leading order QCD calculations with multi-purpose parton-shower generators. We provide phenomenological results for electroweak WZjj production with fully leptonic decays at the LHC in realistic setups and discuss theoretical uncertainties associated with the simulation. We find that beyond the leading-order approximation the dependence on the unphysical factorization and renormalization scales is mild. The two tagging jets are furthermore very stable against parton-shower effects. However, considerable sensitivities to the shower Monte-Carlo program used are observed for central-jet veto observables.