Header

UZH-Logo

Maintenance Infos

Effects of temperature on growth, development and diapause in the yellow dung fly - against all the rules?


Blanckenhorn, Wolf U (1997). Effects of temperature on growth, development and diapause in the yellow dung fly - against all the rules? Oecologia, 111(3):318-324.

Abstract

The effects of rearing temperature (and photoperiod) on growth, development, body size, and diapause induction and termination in the yellow dung fly, Scathophaga stercoraria, were investigated by allowing replicate families of larvae to develop in the field along a time sequence approaching the onset of winter. This was supplemented with extensive laboratory rearing. At constant laboratory temperatures, growth rates were maximal between 15°C and 20°C and decreased at higher (25°C) and lower (10°C) temperatures, while the development rate was maximal at 25°C. Perhaps related to this, yellow dung flies reached a given size faster at naturally variable, as opposed to constant, temperatures. In the field, lower temperatures towards the end of the season resulted in larger individuals that grew faster. Adult body size increased as development time, expressed in calendar days, increased, a positive relationship commonly taken for granted in life history theory, but decreased as development time expressed in degree-days increased. The effect of temperature on growth, development and body size can thus change or even reverse if individuals can alter their growth rate independently of development time, and if the physiological effects of temperature are factored out by converting development time into degree-days above a lower development threshold. Therefore, supposedly well-established trends possibly need to be re-examined along these lines. Pupal winter diapause towards the end of the season was highly reversible by temperature. Pre- and post-winter emergence patterns together suggest that the minimum time for yellow dung flies to successfully complete development, at any time of the year, is about 230–250 degree-days.

Abstract

The effects of rearing temperature (and photoperiod) on growth, development, body size, and diapause induction and termination in the yellow dung fly, Scathophaga stercoraria, were investigated by allowing replicate families of larvae to develop in the field along a time sequence approaching the onset of winter. This was supplemented with extensive laboratory rearing. At constant laboratory temperatures, growth rates were maximal between 15°C and 20°C and decreased at higher (25°C) and lower (10°C) temperatures, while the development rate was maximal at 25°C. Perhaps related to this, yellow dung flies reached a given size faster at naturally variable, as opposed to constant, temperatures. In the field, lower temperatures towards the end of the season resulted in larger individuals that grew faster. Adult body size increased as development time, expressed in calendar days, increased, a positive relationship commonly taken for granted in life history theory, but decreased as development time expressed in degree-days increased. The effect of temperature on growth, development and body size can thus change or even reverse if individuals can alter their growth rate independently of development time, and if the physiological effects of temperature are factored out by converting development time into degree-days above a lower development threshold. Therefore, supposedly well-established trends possibly need to be re-examined along these lines. Pupal winter diapause towards the end of the season was highly reversible by temperature. Pre- and post-winter emergence patterns together suggest that the minimum time for yellow dung flies to successfully complete development, at any time of the year, is about 230–250 degree-days.

Statistics

Citations

Dimensions.ai Metrics
45 citations in Web of Science®
48 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 22 Aug 2019
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Uncontrolled Keywords:Ecology, Evolution, Behavior and Systematics
Language:English
Date:18 July 1997
Deposited On:22 Aug 2019 12:56
Last Modified:31 Jul 2020 03:32
Publisher:Springer
ISSN:0029-8549
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s004420050241

Download

Closed Access: Download allowed only for UZH members