Header

UZH-Logo

Maintenance Infos

Habitat‐driven life history variation in an amphibian metapopulation


Cayuela, Hugo; Cruickshank, Sam S; Brandt, Hannelore; Ozgul, Arpat; Schmidt, Benedikt R (2019). Habitat‐driven life history variation in an amphibian metapopulation. Oikos, 128(9):1265-1276.

Abstract

Life‐history theory states that, during the lifetime of an individual, resources are allocated to either somatic maintenance or reproduction. Resource allocation tradeoffs determine the evolution and ecology of life‐history strategies and determine an organisms’ position along the fast–slow continuum. Theory predicts that environmental stochasticity is an important driver of resource allocation and therefore life‐history evolution. Highly stochastic environments are expected to increase uncertainty in reproductive success and select for iteroparity and a slowing down of the life history. To date, most empirical studies have used comparisons among species to examine these theoretical predictions. By contrast, few have investigated how environmental stochasticity affects life‐history strategies at the intraspecific level. In this study, we examined how variation in breeding site stochasticity (among‐year variability in pond volume and hydroperiod) promotes the co‐occurrence of different life‐history strategies in a spatially structured population, and determines life‐history position along the fast–slow continuum in the yellow‐bellied toad Bombina variegata. We collected mark–recapture data from a metapopulation and used multievent capture–recapture models to estimate survival, recruitment and breeding probabilities. We found higher survival and longer lifespans in populations inhabiting variable sites compared to those breeding in stable ones. In addition, probabilities of recruitment and skipping a breeding event were higher in variable sites. The temporal variance of survival and recruitment probabilities, as well as the probability to skip breeding, was higher in variable sites. Taken together, these findings indicate that populations breeding in variable sites experienced a slowing down of the life‐history. Our study thus revealed similarities in the macroevolutionary and microevolutionary processes shaping life‐history evolution.

Abstract

Life‐history theory states that, during the lifetime of an individual, resources are allocated to either somatic maintenance or reproduction. Resource allocation tradeoffs determine the evolution and ecology of life‐history strategies and determine an organisms’ position along the fast–slow continuum. Theory predicts that environmental stochasticity is an important driver of resource allocation and therefore life‐history evolution. Highly stochastic environments are expected to increase uncertainty in reproductive success and select for iteroparity and a slowing down of the life history. To date, most empirical studies have used comparisons among species to examine these theoretical predictions. By contrast, few have investigated how environmental stochasticity affects life‐history strategies at the intraspecific level. In this study, we examined how variation in breeding site stochasticity (among‐year variability in pond volume and hydroperiod) promotes the co‐occurrence of different life‐history strategies in a spatially structured population, and determines life‐history position along the fast–slow continuum in the yellow‐bellied toad Bombina variegata. We collected mark–recapture data from a metapopulation and used multievent capture–recapture models to estimate survival, recruitment and breeding probabilities. We found higher survival and longer lifespans in populations inhabiting variable sites compared to those breeding in stable ones. In addition, probabilities of recruitment and skipping a breeding event were higher in variable sites. The temporal variance of survival and recruitment probabilities, as well as the probability to skip breeding, was higher in variable sites. Taken together, these findings indicate that populations breeding in variable sites experienced a slowing down of the life‐history. Our study thus revealed similarities in the macroevolutionary and microevolutionary processes shaping life‐history evolution.

Statistics

Citations

Dimensions.ai Metrics
13 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 05 Sep 2019
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Uncontrolled Keywords:ecology, demography, habitat, life history, amphibian, Bombina, stability
Language:English
Date:1 September 2019
Deposited On:05 Sep 2019 13:11
Last Modified:22 Sep 2023 01:45
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0030-1299
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/oik.06286