Abstract
PURPOSE
Obstructive sleep apnoea (OSA) is a highly prevalent sleep-related breathing disorder associated with hypertension, impaired peripheral vascular function and an increased risk of stroke. Evidence suggests that abnormalities of the cerebral microcirculation, such as capillary rarefication, may be present in these patients. We evaluated whether the presence of hypertension may affect the cerebral capillary architecture and function assessed by Intravoxel Incoherent Motion (IVIM) magnetic resonance imaging (MRI) in patients with continuous positive airway pressure (CPAP)-treated OSA.
METHODS
Forty-one patients (88% male, mean age 57 ± 10 years) with moderate-to-severe OSA were selected and divided into two groups (normotensive vs. hypertensive). All hypertensive OSA patients were adherent with their antihypertensive medication. Cerebral microvascular structure was assessed in grey (GM) and white matter (WM) using an echo-planar diffusion imaging sequence with 14 different b values. A step-wise IVIM analysis algorithm was applied to compute true diffusion (D), perfusion fraction (f) and pseudo-diffusion (D*) values. Group comparisons were performed with the Wilcoxon-Mann-Whitney-Test. Regression analysis was adjusted for age.
RESULTS
Diffusion- and perfusion-related indexes in middle-aged OSA normotensive patients were quantified in both tissue types (D [10 mm/s]: GM = 0.83 ± 0.03; WM = 0.72 ± 0.03; f (%) GM = 0.09 ± 0.01; WM = 0.06 ± 0.01; D* [10 mm/s]: GM = 7.72 ± 0.89; WM = 7.38 ± 0.98). In the examined tissue types, hypertension did not result in changes on the estimated MRI IVIM index values.
CONCLUSION
Based on IVIM analysis, cerebral microvascular structure and function showed no difference between hypertensive and normotensive patients with moderate-to-severe OSA treated with CPAP. Treatment adherence with antihypertensive drug regime and, in turn, controlled hypertension seems not to affect microvascular structure and perfusion of the brain.
TRIAL REGISTRATION
ClinicalTrials.gov Identifier: NCT02493673.