Header

UZH-Logo

Maintenance Infos

Developmental Pathoconnectomics and Advanced Fetal MRI


Jakab, András (2019). Developmental Pathoconnectomics and Advanced Fetal MRI. Topics in magnetic resonance imaging : TMRI, 28(5):275-284.

Abstract

Developmental pathoconnectomics is an emerging field that aims to unravel the events leading to and outcome from disrupted brain connectivity development. Advanced magnetic resonance imaging (MRI) technology enables the portrayal of human brain connectivity before birth and has the potential to offer novel insights into normal and pathological human brain development. This review gives an overview of the currently used MRI techniques for connectomic imaging, with a particular focus on recent studies that have successfully translated these to the in utero or postmortem fetal setting. Possible mechanisms of how pathologies, maternal, or environmental factors may interfere with the emergence of the connectome are considered. The review highlights the importance of advanced image post processing and the need for reproducibility studies for connectomic imaging. Further work and novel data-sharing efforts would be required to validate or disprove recent observations from in utero connectomic studies, which are typically limited by low case numbers and high data drop out. Novel knowledge with regard to the ontogenesis, architecture, and temporal dynamics of the human brain connectome would lead to the more precise understanding of the etiological background of neurodevelopmental and mental disorders. To achieve this goal, this review considers the growing evidence from advanced fetal connectomic imaging for the increased vulnerability of the human brain during late gestation for pathologies that might lead to impaired connectome development and subsequently interfere with the development of neural substrates serving higher cognition.

Abstract

Developmental pathoconnectomics is an emerging field that aims to unravel the events leading to and outcome from disrupted brain connectivity development. Advanced magnetic resonance imaging (MRI) technology enables the portrayal of human brain connectivity before birth and has the potential to offer novel insights into normal and pathological human brain development. This review gives an overview of the currently used MRI techniques for connectomic imaging, with a particular focus on recent studies that have successfully translated these to the in utero or postmortem fetal setting. Possible mechanisms of how pathologies, maternal, or environmental factors may interfere with the emergence of the connectome are considered. The review highlights the importance of advanced image post processing and the need for reproducibility studies for connectomic imaging. Further work and novel data-sharing efforts would be required to validate or disprove recent observations from in utero connectomic studies, which are typically limited by low case numbers and high data drop out. Novel knowledge with regard to the ontogenesis, architecture, and temporal dynamics of the human brain connectome would lead to the more precise understanding of the etiological background of neurodevelopmental and mental disorders. To achieve this goal, this review considers the growing evidence from advanced fetal connectomic imaging for the increased vulnerability of the human brain during late gestation for pathologies that might lead to impaired connectome development and subsequently interfere with the development of neural substrates serving higher cognition.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

19 downloads since deposited on 10 Jan 2020
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Radiology, Nuclear Medicine and Imaging
Language:English
Date:October 2019
Deposited On:10 Jan 2020 08:48
Last Modified:01 Oct 2020 00:01
Publisher:Lippincott Williams & Wilkins
ISSN:0899-3459
OA Status:Green
Publisher DOI:https://doi.org/10.1097/RMR.0000000000000220
PubMed ID:31592994

Download

Green Open Access

Download PDF  'Developmental Pathoconnectomics and Advanced Fetal MRI'.
Preview
Content: Published Version
Filetype: PDF
Size: 507kB
View at publisher