Header

UZH-Logo

Maintenance Infos

Effects of N7-methylation, N7-platination, and C8-hydroxylation of guanine on H-bond formation with cytosine: platinum coordination strengthens the Watson-Crick pair.


Sigel, Roland K O; Freisinger, Eva; Lippert, B (2000). Effects of N7-methylation, N7-platination, and C8-hydroxylation of guanine on H-bond formation with cytosine: platinum coordination strengthens the Watson-Crick pair. Journal of Biological Inorganic Chemistry, 5(3):287-289.

Abstract

The hydrogen bonding properties of 1-methylcytosine (1-MeC) with the following guanine base derivatives have been studied in DMSO-d6, applying concentration-dependent 1H NMR spectroscopy: 9-ethylguanine, 7,9-dimethylguanine (7,9-DimeGH+), and 7,8-dihydro-8-oxo-9-methylguanine (8-O-9-MeGH), as well as three 9-ethylguanine complexes carrying different Pt(II) moieties at the N7 position. The association constants K for the Watson-Crick pairing schemes are by a factor 2-3 higher in the cases of platinated guanine complexes compared to the Watson-Crick pair between 9-ethylguanine and 1-methylcytosine (K = 6.9 +/- 1.3 M(-1)). Similar enhanced stabilities are observed for the pairs formed between 1-MeC and 7,9-DimeGH+ or 8-O-9-MeGH. The increase in N1H acidity of the guanine derivative upon modification at the N7 or C8 positions can be correlated with the association constants K; the result is a bell-shaped curve meaning that acidification initially stabilizes hydrogen bond formation up to a certain maximum; further acidification then leads to a destabilization. For two of the examples studied in solution, hydrogen bonding according to Watson-Crick between N7-platinated 9-ethylguanine and 1-methylcytosine has also been established by X-ray crystallography.

Abstract

The hydrogen bonding properties of 1-methylcytosine (1-MeC) with the following guanine base derivatives have been studied in DMSO-d6, applying concentration-dependent 1H NMR spectroscopy: 9-ethylguanine, 7,9-dimethylguanine (7,9-DimeGH+), and 7,8-dihydro-8-oxo-9-methylguanine (8-O-9-MeGH), as well as three 9-ethylguanine complexes carrying different Pt(II) moieties at the N7 position. The association constants K for the Watson-Crick pairing schemes are by a factor 2-3 higher in the cases of platinated guanine complexes compared to the Watson-Crick pair between 9-ethylguanine and 1-methylcytosine (K = 6.9 +/- 1.3 M(-1)). Similar enhanced stabilities are observed for the pairs formed between 1-MeC and 7,9-DimeGH+ or 8-O-9-MeGH. The increase in N1H acidity of the guanine derivative upon modification at the N7 or C8 positions can be correlated with the association constants K; the result is a bell-shaped curve meaning that acidification initially stabilizes hydrogen bond formation up to a certain maximum; further acidification then leads to a destabilization. For two of the examples studied in solution, hydrogen bonding according to Watson-Crick between N7-platinated 9-ethylguanine and 1-methylcytosine has also been established by X-ray crystallography.

Statistics

Citations

Dimensions.ai Metrics
92 citations in Web of Science®
99 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Life Sciences > Biochemistry
Physical Sciences > Inorganic Chemistry
Language:English
Date:1 June 2000
Deposited On:11 Feb 2008 12:25
Last Modified:01 Dec 2023 02:41
Publisher:Springer
ISSN:0949-8257
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/PL00010657
PubMed ID:10907739
Full text not available from this repository.