Header

UZH-Logo

Maintenance Infos

On the retinal correspondences across the binocular visual field


Hess, Bernhard J M (2019). On the retinal correspondences across the binocular visual field. Progress in Brain Research, 248:139-156.

Abstract

We have recently reported that objects seen at near distances require adjustments of the relative torsion of the eyes to avoid blurred binocular images or double vision and ultimately to allow binocular fusion. The reason underlying these rotational adjustments is that converging eye movements undo the eyes' torsional alignment, generating disparate binocular images of objects outside the horizontal plane of regard. We show mathematically that it is the distance between the two eyes, their relative orientation in the frontal plane and the distances from each eye to the binocularly intended visual target, that determine the binocular alignment of the lines of sight. As an example, we analyze the binocular disparity field that is generated when a viewer examines objects on a planar surface whose viewing distances differ in each gaze direction. The underlying geometric computations are simple, and require no explicit knowledge of 3D eye movement kinematics.

Abstract

We have recently reported that objects seen at near distances require adjustments of the relative torsion of the eyes to avoid blurred binocular images or double vision and ultimately to allow binocular fusion. The reason underlying these rotational adjustments is that converging eye movements undo the eyes' torsional alignment, generating disparate binocular images of objects outside the horizontal plane of regard. We show mathematically that it is the distance between the two eyes, their relative orientation in the frontal plane and the distances from each eye to the binocularly intended visual target, that determine the binocular alignment of the lines of sight. As an example, we analyze the binocular disparity field that is generated when a viewer examines objects on a planar surface whose viewing distances differ in each gaze direction. The underlying geometric computations are simple, and require no explicit knowledge of 3D eye movement kinematics.

Statistics

Citations

Altmetrics

Downloads

1 download since deposited on 31 Oct 2019
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Language:English
Date:2019
Deposited On:31 Oct 2019 08:38
Last Modified:29 Jul 2020 11:35
Publisher:Elsevier
ISSN:0079-6123
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/bs.pbr.2019.04.006
PubMed ID:31239127

Download

Closed Access: Download allowed only for UZH members