Abstract
In the absence of a task, the brain at rest spontaneously displays activity that reflects features of the underlying neural substrate. Examination of inter-areal coupling of resting state oscillatory activity reveals that the brain’s resting activity is composed of functionally connected networks, which differ depending upon oscillatory frequency, suggesting a role for carrier frequency as a means of creating multiplexed, or functionally segregated, communication channels between brain areas. In a group of 89 participants we examined spectrally-resolved resting-state connectivity patterns derived from MEG recordings to determine the relationship between connectivity intrinsic to different frequency channels and a battery of over a hundred behavioural and demographic indicators, using canonical correlation analysis. We demonstrate that each of the classical frequency bands in the range 1-40Hz (delta, theta, alpha, beta and gamma) delineates a subnetwork that is behaviourally relevant, spatially distinct, and whose expression is predictive of either positive or negative individual traits.