Header

UZH-Logo

Maintenance Infos

Metabolic Activity in Central Neural Structures of Patients With Myocardial Injury


Abstract

Background Increasing evidence suggests a psychosomatic link between neural systems and the heart. In light of the growing burden of ischemic cardiovascular disease across the globe, a better understanding of heart-brain interactions and their implications for cardiovascular treatment strategies is needed. Thus, we sought to investigate the interaction between myocardial injury and metabolic alterations in central neural areas in patients with suspected or known coronary artery disease. Methods and Results The association between resting metabolic activity in distinct neural structures and cardiac function was analyzed in 302 patients (aged 66.8±10.2 years; 70.9% men) undergoing fluor-18-deoxyglucose positron emission tomography and 99mTc-tetrofosmin single-photon emission computed tomography myocardial perfusion imaging. There was evidence for reduction of callosal, caudate, and brainstem fluor-18-deoxyglucose uptake in patients with impaired left ventricular ejection fraction (<55% versus ≥55%: P=0.047, P=0.022, and P=0.013, respectively) and/or in the presence of myocardial ischemia (versus normal perfusion: P=0.010, P=0.013, and P=0.016, respectively). In a sex-stratified analysis, these differences were observed in men, but not in women. A first-order interaction term consisting of sex and impaired left ventricular ejection fraction or myocardial ischemia was identified as predictor of metabolic activity in these neural regions (left ventricular ejection fraction: P=0.015 for brainstem; myocardial ischemia: P=0.004, P=0.018, and P=0.003 for callosal, caudate, or brainstem metabolism, respectively). Conclusions Myocardial dysfunction and injury are associated with reduced resting metabolic activity of central neural structures, including the corpus callosum, the caudate nucleus, and the brainstem. These associations differ in women and men, suggesting sex differences in the pathophysiological interplay of the nervous and cardiovascular systems.

Abstract

Background Increasing evidence suggests a psychosomatic link between neural systems and the heart. In light of the growing burden of ischemic cardiovascular disease across the globe, a better understanding of heart-brain interactions and their implications for cardiovascular treatment strategies is needed. Thus, we sought to investigate the interaction between myocardial injury and metabolic alterations in central neural areas in patients with suspected or known coronary artery disease. Methods and Results The association between resting metabolic activity in distinct neural structures and cardiac function was analyzed in 302 patients (aged 66.8±10.2 years; 70.9% men) undergoing fluor-18-deoxyglucose positron emission tomography and 99mTc-tetrofosmin single-photon emission computed tomography myocardial perfusion imaging. There was evidence for reduction of callosal, caudate, and brainstem fluor-18-deoxyglucose uptake in patients with impaired left ventricular ejection fraction (<55% versus ≥55%: P=0.047, P=0.022, and P=0.013, respectively) and/or in the presence of myocardial ischemia (versus normal perfusion: P=0.010, P=0.013, and P=0.016, respectively). In a sex-stratified analysis, these differences were observed in men, but not in women. A first-order interaction term consisting of sex and impaired left ventricular ejection fraction or myocardial ischemia was identified as predictor of metabolic activity in these neural regions (left ventricular ejection fraction: P=0.015 for brainstem; myocardial ischemia: P=0.004, P=0.018, and P=0.003 for callosal, caudate, or brainstem metabolism, respectively). Conclusions Myocardial dysfunction and injury are associated with reduced resting metabolic activity of central neural structures, including the corpus callosum, the caudate nucleus, and the brainstem. These associations differ in women and men, suggesting sex differences in the pathophysiological interplay of the nervous and cardiovascular systems.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 01 Nov 2019
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > University Hospital Zurich > Klinik für Konsiliarpsychiatrie und Psychosomatik
04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
04 Faculty of Medicine > Center for Molecular Cardiology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Cardiology and Cardiovascular Medicine
Uncontrolled Keywords:Cardiology and Cardiovascular Medicine
Language:English
Date:1 October 2019
Deposited On:01 Nov 2019 13:18
Last Modified:11 May 2020 19:12
Publisher:Wiley Open Access
ISSN:2047-9980
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1161/jaha.119.013070
PubMed ID:31566462

Download

Gold Open Access

Download PDF  'Metabolic Activity in Central Neural Structures of Patients With Myocardial Injury'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)