Header

UZH-Logo

Maintenance Infos

Ultrashort Time to Echo Magnetic Resonance Evaluation of Calcium Pyrophosphate Crystal Deposition in Human Menisci.


Finkenstaedt, Tim; Biswas, Reni; Abeydeera, Nirusha A; Siriwanarangsun, Palanan; Healey, Robert; Statum, Sheronda; Bae, Won C; Chung, Christine B (2019). Ultrashort Time to Echo Magnetic Resonance Evaluation of Calcium Pyrophosphate Crystal Deposition in Human Menisci. Investigative Radiology, 54(6):349-355.

Abstract

OBJECTIVES
In human menisci, we aimed to investigate whether calcium pyrophosphate crystal deposition (CPPD) affects biomechanical and quantitative MR properties, and their zonal distribution.
MATERIALS AND METHODS
From 9 cadaveric knees, sectioned triangular meniscus pieces were harvested. Samples were classified into "normal" or "CPPD" groups based upon visual inspection. Micro computed tomography scan verified CPPD. Using magnetic resonance imaging, ultrashort echo time (UTE) T2* and spin echo (SE) T2, quantitative values in 3 zones (red, red-white, and white) were determined. Using biomechanical test, indentation forces in the same zones were determined. Effects of CPPD and meniscal zone on indentation force and quantitative MR values were compared.
RESULTS
On UTE MRI scans, CPPD-affected menisci exhibited punctate dark regions, found mostly (92%) in avascular white and red-white zones. Indentation forces were significantly higher for CPPD samples in the red-white (all P < 0.02) and white (all P < 0.004) zones but not in the vascular red zone (all P > 0.2). Similarly, UTE T2* red zone values were similar between both groups (~6.6 milliseconds, P = 0.8), whereas in the red-white and white zones, CPPD samples had significantly lower values (~5.1 milliseconds, P = 0.005 to 0.007). In contrast, SE T2 values showed no difference with CPPD (P = 0.12 to 0.16). UTE T2*, but not SE T2, correlated significantly with indentation force (R = -0.29, P = 0.009).
CONCLUSIONS
Dark CPP deposits were detectable on UTE images featuring high signal intensity from surrounding meniscal tissue. Preliminary results indicate that CPP deposits were almost exclusively found in the avascular zones. Compared with normal, CPPD menisci featured higher indentation stiffness and lower UTE T2* values in the affected zones.

Abstract

OBJECTIVES
In human menisci, we aimed to investigate whether calcium pyrophosphate crystal deposition (CPPD) affects biomechanical and quantitative MR properties, and their zonal distribution.
MATERIALS AND METHODS
From 9 cadaveric knees, sectioned triangular meniscus pieces were harvested. Samples were classified into "normal" or "CPPD" groups based upon visual inspection. Micro computed tomography scan verified CPPD. Using magnetic resonance imaging, ultrashort echo time (UTE) T2* and spin echo (SE) T2, quantitative values in 3 zones (red, red-white, and white) were determined. Using biomechanical test, indentation forces in the same zones were determined. Effects of CPPD and meniscal zone on indentation force and quantitative MR values were compared.
RESULTS
On UTE MRI scans, CPPD-affected menisci exhibited punctate dark regions, found mostly (92%) in avascular white and red-white zones. Indentation forces were significantly higher for CPPD samples in the red-white (all P < 0.02) and white (all P < 0.004) zones but not in the vascular red zone (all P > 0.2). Similarly, UTE T2* red zone values were similar between both groups (~6.6 milliseconds, P = 0.8), whereas in the red-white and white zones, CPPD samples had significantly lower values (~5.1 milliseconds, P = 0.005 to 0.007). In contrast, SE T2 values showed no difference with CPPD (P = 0.12 to 0.16). UTE T2*, but not SE T2, correlated significantly with indentation force (R = -0.29, P = 0.009).
CONCLUSIONS
Dark CPP deposits were detectable on UTE images featuring high signal intensity from surrounding meniscal tissue. Preliminary results indicate that CPP deposits were almost exclusively found in the avascular zones. Compared with normal, CPPD menisci featured higher indentation stiffness and lower UTE T2* values in the affected zones.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 05 Nov 2019
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Radiology, Nuclear Medicine and Imaging
Language:English
Date:June 2019
Deposited On:05 Nov 2019 12:31
Last Modified:29 Jul 2020 11:37
Publisher:Lippincott Williams & Wilkins
ISSN:0020-9996
OA Status:Green
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1097/RLI.0000000000000547
PubMed ID:30688685

Download

Green Open Access

Download PDF  'Ultrashort Time to Echo Magnetic Resonance Evaluation of Calcium Pyrophosphate Crystal Deposition in Human Menisci.'.
Preview
Content: Published Version
Filetype: PDF
Size: 533kB
View at publisher