Header

UZH-Logo

Maintenance Infos

Deep learning optoacoustic tomography with sparse data


Davoudi, Neda; Deán-Ben, Xosé Luís; Razansky, Daniel (2019). Deep learning optoacoustic tomography with sparse data. Nature Machine Intelligence, 1(10):453-460.

Abstract

The rapidly evolving field of optoacoustic (photoacoustic) imaging and tomography is driven by a constant need for better imaging performance in terms of resolution, speed, sensitivity, depth and contrast. In practice, data acquisition strategies commonly involve sub-optimal sampling of the tomographic data, resulting in inevitable performance trade-offs and diminished image quality. We propose a new framework for efficient recovery of image quality from sparse optoacoustic data based on a deep convolutional neural network and demonstrate its performance with whole body mouse imaging in vivo. To generate accurate high-resolution reference images for optimal training, a full-view tomographic scanner capable of attaining superior cross-sectional image quality from living mice was devised. When provided with images reconstructed from substantially undersampled data or limited-view scans, the trained network was capable of enhancing the visibility of arbitrarily oriented structures and restoring the expected image quality. Notably, the network also eliminated some reconstruction artefacts present in reference images rendered from densely sampled data. No comparable gains were achieved when the training was performed with synthetic or phantom data, underlining the importance of training with high-quality in vivo images acquired by full-view scanners. The new method can benefit numerous optoacoustic imaging applications by mitigating common image artefacts, enhancing anatomical contrast and image quantification capacities, accelerating data acquisition and image reconstruction approaches, while also facilitating the development of practical and affordable imaging systems. The suggested approach operates solely on image-domain data and thus can be seamlessly applied to artefactual images reconstructed with other modalities.

Abstract

The rapidly evolving field of optoacoustic (photoacoustic) imaging and tomography is driven by a constant need for better imaging performance in terms of resolution, speed, sensitivity, depth and contrast. In practice, data acquisition strategies commonly involve sub-optimal sampling of the tomographic data, resulting in inevitable performance trade-offs and diminished image quality. We propose a new framework for efficient recovery of image quality from sparse optoacoustic data based on a deep convolutional neural network and demonstrate its performance with whole body mouse imaging in vivo. To generate accurate high-resolution reference images for optimal training, a full-view tomographic scanner capable of attaining superior cross-sectional image quality from living mice was devised. When provided with images reconstructed from substantially undersampled data or limited-view scans, the trained network was capable of enhancing the visibility of arbitrarily oriented structures and restoring the expected image quality. Notably, the network also eliminated some reconstruction artefacts present in reference images rendered from densely sampled data. No comparable gains were achieved when the training was performed with synthetic or phantom data, underlining the importance of training with high-quality in vivo images acquired by full-view scanners. The new method can benefit numerous optoacoustic imaging applications by mitigating common image artefacts, enhancing anatomical contrast and image quantification capacities, accelerating data acquisition and image reconstruction approaches, while also facilitating the development of practical and affordable imaging systems. The suggested approach operates solely on image-domain data and thus can be seamlessly applied to artefactual images reconstructed with other modalities.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

1 download since deposited on 05 Nov 2019
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology

04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:1 October 2019
Deposited On:05 Nov 2019 15:44
Last Modified:29 Jul 2020 11:38
Publisher:Nature Publishing Group
ISSN:2522-5839
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/s42256-019-0095-3

Download

Closed Access: Download allowed only for UZH members