Header

UZH-Logo

Maintenance Infos

CD8+ T cells retain protective functions despite sustained inhibitory receptor expression during Epstein-Barr virus infection in vivo


Chatterjee, Bithi; Deng, Yun; Holler, Angelika; Núñez, Nicolás Gonzalo; Azzi, Tarik; Vanoaica, Liliana Danusia; Müller, Anne; Zdimerova, Hana; Antsiferova, Olga; Zbinden, Andrea; Capaul, Riccarda; Dreyer, Johannes H; Nadal, David; Becher, Burkhard; Robinson, Mark D; Stauss, Hans; Münz, Christian (2019). CD8+ T cells retain protective functions despite sustained inhibitory receptor expression during Epstein-Barr virus infection in vivo. PLoS Pathogens, 15(5):e1007748.

Abstract

Epstein Barr virus (EBV) is one of the most ubiquitous human pathogens in the world, persistently infecting more than 90% of the adult human population. It drives some of the strongest human CD8+ T cell responses, which can be observed during symptomatic primary infection known as infectious mononucleosis (IM). Despite high viral loads and prolonged CD8+ T cell stimulation during IM, EBV enters latency and is under lifelong immune control in most individuals that experience this disease. We investigated whether changes in T cell function, as frequently characterized by PD-1 up-regulation, occur during IM due to the prolonged exposure to high antigen levels. We readily detected the expansion of PD-1 positive CD8+ T cells together with high frequencies of Tim-3, 2B4, and KLRG1 expression during IM and in mice with reconstituted human immune system components (huNSG mice) that had been infected with a high dose of EBV. These PD-1 positive CD8+ T cells, however, retained proliferation, cytokine production, and cytotoxic abilities. Multiple subsets of CD8+ T cells expanded during EBV infection, including PD-1+Tim-3+KLRG1+ cells that express CXCR5 and TCF-1 germinal center homing and memory markers, and may also contain BATF3. Moreover, blocking the PD-1 axis compromised EBV specific immune control and resulted in virus-associated lymphomagenesis. Finally, PD-1+, Tim-3+, and KLRG1+ CD8+ T cell expansion coincided with declining viral loads during low dose EBV infection. These findings suggest that EBV infection primes PD-1 positive CD8+ T cell populations that rely on this receptor axis for the efficient immune control of this ubiquitous human tumor virus.

Abstract

Epstein Barr virus (EBV) is one of the most ubiquitous human pathogens in the world, persistently infecting more than 90% of the adult human population. It drives some of the strongest human CD8+ T cell responses, which can be observed during symptomatic primary infection known as infectious mononucleosis (IM). Despite high viral loads and prolonged CD8+ T cell stimulation during IM, EBV enters latency and is under lifelong immune control in most individuals that experience this disease. We investigated whether changes in T cell function, as frequently characterized by PD-1 up-regulation, occur during IM due to the prolonged exposure to high antigen levels. We readily detected the expansion of PD-1 positive CD8+ T cells together with high frequencies of Tim-3, 2B4, and KLRG1 expression during IM and in mice with reconstituted human immune system components (huNSG mice) that had been infected with a high dose of EBV. These PD-1 positive CD8+ T cells, however, retained proliferation, cytokine production, and cytotoxic abilities. Multiple subsets of CD8+ T cells expanded during EBV infection, including PD-1+Tim-3+KLRG1+ cells that express CXCR5 and TCF-1 germinal center homing and memory markers, and may also contain BATF3. Moreover, blocking the PD-1 axis compromised EBV specific immune control and resulted in virus-associated lymphomagenesis. Finally, PD-1+, Tim-3+, and KLRG1+ CD8+ T cell expansion coincided with declining viral loads during low dose EBV infection. These findings suggest that EBV infection primes PD-1 positive CD8+ T cell populations that rely on this receptor axis for the efficient immune control of this ubiquitous human tumor virus.

Statistics

Citations

Dimensions.ai Metrics
40 citations in Web of Science®
39 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

26 downloads since deposited on 15 Nov 2019
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Virology
07 Faculty of Science > Institute of Molecular Life Sciences
04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Parasitology
Life Sciences > Microbiology
Life Sciences > Immunology
Life Sciences > Molecular Biology
Life Sciences > Genetics
Life Sciences > Virology
Language:English
Date:May 2019
Deposited On:15 Nov 2019 10:21
Last Modified:22 Nov 2023 02:41
Publisher:Public Library of Science (PLoS)
ISSN:1553-7366
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.ppat.1007748
PubMed ID:31145756
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)