Header

UZH-Logo

Maintenance Infos

Population-level consequences of risky dispersal


Shaw, Allison K; Jalasvuori, Matti; Kokko, Hanna (2014). Population-level consequences of risky dispersal. Oikos, 123(8):1003-1013.

Abstract

Achieving sufficient connectivity between populations is essential for persistence, but costs of dispersal may select against individual traits or behaviours that, if present, would improve connectivity. Existing dispersal models tend to ignore the multitude of risks to individuals: while many assess the effect of mortality costs, there is also a risk of failing to find new habitat, especially when the entire inhabitable area remains both small and fragmented. There are few known rules governing whether individuals evolve to disperse more, or less, than what is ideal for population connectivity and persistence. Here we aim to fill this gap, while also noting that evolution might not only produce suboptimal dispersal behaviour: it also influences individual heterogeneity in dispersal. Intuitively, we might expect heterogeneity to improve connectivity, as some individuals will travel far. However, we show that this is only true if dispersal distances on average are quite short; heterogeneity can also lead to reduced connectivity because it can reduce the proportion of the most profitable (‘safest’) intermediate dispersal distances. In general, our results show that conditions typically associated with conservation concerns (small and fragmented habitats inhabited by a species with a low birth rate) are also ones that are most likely to lead to suboptimal dispersal traits. This prompts the question of assisted dispersal in cases of urgent conservation concern.

Abstract

Achieving sufficient connectivity between populations is essential for persistence, but costs of dispersal may select against individual traits or behaviours that, if present, would improve connectivity. Existing dispersal models tend to ignore the multitude of risks to individuals: while many assess the effect of mortality costs, there is also a risk of failing to find new habitat, especially when the entire inhabitable area remains both small and fragmented. There are few known rules governing whether individuals evolve to disperse more, or less, than what is ideal for population connectivity and persistence. Here we aim to fill this gap, while also noting that evolution might not only produce suboptimal dispersal behaviour: it also influences individual heterogeneity in dispersal. Intuitively, we might expect heterogeneity to improve connectivity, as some individuals will travel far. However, we show that this is only true if dispersal distances on average are quite short; heterogeneity can also lead to reduced connectivity because it can reduce the proportion of the most profitable (‘safest’) intermediate dispersal distances. In general, our results show that conditions typically associated with conservation concerns (small and fragmented habitats inhabited by a species with a low birth rate) are also ones that are most likely to lead to suboptimal dispersal traits. This prompts the question of assisted dispersal in cases of urgent conservation concern.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Ecology, Evolution, Behavior and Systematics
Language:English
Date:1 August 2014
Deposited On:04 Dec 2019 16:12
Last Modified:04 Dec 2019 16:13
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0030-1299
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/oik.01229

Download

Full text not available from this repository.
View at publisher

Get full-text in a library