Header

UZH-Logo

Maintenance Infos

Estimating glacier-bed overdeepenings as possible sites of future lakes in the de-glaciating Mont Blanc massif (Western European Alps)


Magnin, Florence; Haeberli, Wilfried; Linsbauer, Andreas; Deline, Philip; Ravanel, Ludovic (2020). Estimating glacier-bed overdeepenings as possible sites of future lakes in the de-glaciating Mont Blanc massif (Western European Alps). Geomorphology, 350:106913.

Abstract

De-glaciating high mountain areas result in new landscapes of bedrock and debris where permafrost can degrade, persist or even newly form in cases, and of new lakes in glacier bed overdeepenings (GBOs) becoming ice-free. These landscapes with new lakes in close neighborhood to over-steepened and perennially frozen slopes are prone to chain reaction processes (e.g. rock-ice avalanches into lakes triggering impact waves, dam breach or overtopping, and debris flows) with potentially far-reaching run-out distances causing valley floors devastation. The frequency, magnitude and zonation of hazards are shifting, requiring integrative approaches combining comprehensive information about landscape evolution and related processes to support stakeholders in their adaptation strategies. In this study, we intend to setup an essential baseline for such an integrative approach in the Mont Blanc massif (MBM), which is a typical high-mountain range affected by de-glaciation processes. We first (i) predict and (ii) detect potential GBOs by combining the GlabTop model with a visual analysis based on morphological indications of glacier flow through over-deepened bed parts. We then (iii) determine the level of confidence concerning the resulting information, and (iv) estimate the approximate time range under which potential lakes could form. The location of the predicted GBOs and the shape of glacier beds are evaluated against currently forming water bodies at retreating glacier snouts, and seismic and ice penetrating radar measurements on the Argentière glacier. This comparison shows that the location of predicted GBOs is quite robust whereas their morphometric characteristics (depth, volume) are highly uncertain and tend to be underestimated. In total, 48/80 of the predicted or detected GBOs have a high level of confidence. In addition to five recently formed water bodies at glacier snouts, one of the high confidence GBOs (Talèfre glacier) which is also the most voluminous one could form imminently (during coming years), if not partially or totally drained through deeply incised gorges at the rock threshold. Twelve other lakes could form within the first half of the century under a constant or accelerated scenario of continued glacier retreat. Some of them are located below high and permanently frozen rock walls prone to destabilization and high-energy mass movements, hinting at possible hot spots in terms of hazards in the coming decades, where more detailed analysis would be required.

Abstract

De-glaciating high mountain areas result in new landscapes of bedrock and debris where permafrost can degrade, persist or even newly form in cases, and of new lakes in glacier bed overdeepenings (GBOs) becoming ice-free. These landscapes with new lakes in close neighborhood to over-steepened and perennially frozen slopes are prone to chain reaction processes (e.g. rock-ice avalanches into lakes triggering impact waves, dam breach or overtopping, and debris flows) with potentially far-reaching run-out distances causing valley floors devastation. The frequency, magnitude and zonation of hazards are shifting, requiring integrative approaches combining comprehensive information about landscape evolution and related processes to support stakeholders in their adaptation strategies. In this study, we intend to setup an essential baseline for such an integrative approach in the Mont Blanc massif (MBM), which is a typical high-mountain range affected by de-glaciation processes. We first (i) predict and (ii) detect potential GBOs by combining the GlabTop model with a visual analysis based on morphological indications of glacier flow through over-deepened bed parts. We then (iii) determine the level of confidence concerning the resulting information, and (iv) estimate the approximate time range under which potential lakes could form. The location of the predicted GBOs and the shape of glacier beds are evaluated against currently forming water bodies at retreating glacier snouts, and seismic and ice penetrating radar measurements on the Argentière glacier. This comparison shows that the location of predicted GBOs is quite robust whereas their morphometric characteristics (depth, volume) are highly uncertain and tend to be underestimated. In total, 48/80 of the predicted or detected GBOs have a high level of confidence. In addition to five recently formed water bodies at glacier snouts, one of the high confidence GBOs (Talèfre glacier) which is also the most voluminous one could form imminently (during coming years), if not partially or totally drained through deeply incised gorges at the rock threshold. Twelve other lakes could form within the first half of the century under a constant or accelerated scenario of continued glacier retreat. Some of them are located below high and permanently frozen rock walls prone to destabilization and high-energy mass movements, hinting at possible hot spots in terms of hazards in the coming decades, where more detailed analysis would be required.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

2 downloads since deposited on 18 Dec 2019
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Earth-Surface Processes
Language:English
Date:1 February 2020
Deposited On:18 Dec 2019 15:03
Last Modified:19 Dec 2019 08:37
Publisher:Elsevier
ISSN:0169-555X
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.geomorph.2019.106913

Download

Closed Access: Download allowed only for UZH members