Header

UZH-Logo

Maintenance Infos

A low-cost, multi-sensor system to monitor temporary stream dynamics in mountainous headwater catchments


Assendelft, Rick; van Meerveld, H J (2019). A low-cost, multi-sensor system to monitor temporary stream dynamics in mountainous headwater catchments. Sensors, 19(21):4645.

Abstract

While temporary streams account for more than half of the global discharge, high spatiotemporal resolution data on the three main hydrological states (dry streambed, standing water, and flowing water) of temporary stream remains sparse. This study presents a low-cost, multi-sensor system to monitor the hydrological state of temporary streams in mountainous headwaters. The monitoring system consists of an Arduino microcontroller board combined with an SD-card data logger shield, and four sensors: an electrical resistance (ER) sensor, temperature sensor, float switch sensor, and flow sensor. The monitoring system was tested in a small mountainous headwater catchment, where it was installed on multiple locations in the stream network, during two field seasons (2016 and 2017). Time-lapse cameras were installed at all monitoring system locations to evaluate the sensor performance. The field tests showed that the monitoring system was power efficient (running for nine months on four AA batteries at a five-minute logging interval) and able to reliably log data (<1% failed data logs). Of the sensors, the ER sensor (99.9% correct state data and 90.9% correctly timed state changes) and flow sensor (99.9% correct state data and 90.5% correctly timed state changes) performed best (2017 performance results). A setup of the monitoring system with these sensors can provide long-term, high spatiotemporal resolution data on the hydrological state of temporary streams, which will help to improve our understanding of the hydrological functioning of these important systems.

Abstract

While temporary streams account for more than half of the global discharge, high spatiotemporal resolution data on the three main hydrological states (dry streambed, standing water, and flowing water) of temporary stream remains sparse. This study presents a low-cost, multi-sensor system to monitor the hydrological state of temporary streams in mountainous headwaters. The monitoring system consists of an Arduino microcontroller board combined with an SD-card data logger shield, and four sensors: an electrical resistance (ER) sensor, temperature sensor, float switch sensor, and flow sensor. The monitoring system was tested in a small mountainous headwater catchment, where it was installed on multiple locations in the stream network, during two field seasons (2016 and 2017). Time-lapse cameras were installed at all monitoring system locations to evaluate the sensor performance. The field tests showed that the monitoring system was power efficient (running for nine months on four AA batteries at a five-minute logging interval) and able to reliably log data (<1% failed data logs). Of the sensors, the ER sensor (99.9% correct state data and 90.9% correctly timed state changes) and flow sensor (99.9% correct state data and 90.5% correctly timed state changes) performed best (2017 performance results). A setup of the monitoring system with these sensors can provide long-term, high spatiotemporal resolution data on the hydrological state of temporary streams, which will help to improve our understanding of the hydrological functioning of these important systems.

Statistics

Citations

Dimensions.ai Metrics
26 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

54 downloads since deposited on 17 Dec 2019
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Analytical Chemistry
Life Sciences > Biochemistry
Physical Sciences > Atomic and Molecular Physics, and Optics
Physical Sciences > Instrumentation
Physical Sciences > Electrical and Electronic Engineering
Uncontrolled Keywords:Electrical and Electronic Engineering, Analytical Chemistry, Atomic and Molecular Physics, and Optics, Biochemistry
Language:English
Date:25 October 2019
Deposited On:17 Dec 2019 10:30
Last Modified:22 Nov 2023 02:42
Publisher:MDPI Publishing
ISSN:1424-8220
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/s19214645
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)