Header

UZH-Logo

Maintenance Infos

Last phase of the Little Ice Age forced by volcanic eruptions


Abstract

During the first half of the nineteenth century, several large tropical volcanic eruptions occurred within less than three decades. The global climate effects of the 1815 Tambora eruption have been investigated, but those of an eruption in 1808 or 1809 whose source is unknown and the eruptions in the 1820s and 1830s have received less attention. Here we analyse the effect of the sequence of eruptions in observations, global three-dimensional climate field reconstructions and coupled climate model simulations. All the eruptions were followed by substantial drops of summer temperature over the Northern Hemisphere land areas. In addition to the direct radiative effect, which lasts 2–3 years, the simulated ocean–atmosphere heat exchange sustained cooling for several years after these eruptions, which affected the slow components of the climate system. Africa was hit by two decades of drought, global monsoons weakened and the tracks of low-pressure systems over the North Atlantic moved south. The low temperatures and increased precipitation in Europe triggered the last phase of the advance of Alpine glaciers. Only after the 1850s did the transition into the period of anthropogenic warming start. We conclude that the end of the Little Ice Age was marked by the recovery from a sequence of volcanic eruptions, which makes it difficult to define a single pre-industrial baseline.

Abstract

During the first half of the nineteenth century, several large tropical volcanic eruptions occurred within less than three decades. The global climate effects of the 1815 Tambora eruption have been investigated, but those of an eruption in 1808 or 1809 whose source is unknown and the eruptions in the 1820s and 1830s have received less attention. Here we analyse the effect of the sequence of eruptions in observations, global three-dimensional climate field reconstructions and coupled climate model simulations. All the eruptions were followed by substantial drops of summer temperature over the Northern Hemisphere land areas. In addition to the direct radiative effect, which lasts 2–3 years, the simulated ocean–atmosphere heat exchange sustained cooling for several years after these eruptions, which affected the slow components of the climate system. Africa was hit by two decades of drought, global monsoons weakened and the tracks of low-pressure systems over the North Atlantic moved south. The low temperatures and increased precipitation in Europe triggered the last phase of the advance of Alpine glaciers. Only after the 1850s did the transition into the period of anthropogenic warming start. We conclude that the end of the Little Ice Age was marked by the recovery from a sequence of volcanic eruptions, which makes it difficult to define a single pre-industrial baseline.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Dec 2019
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:General Earth and Planetary Sciences
Language:English
Date:1 August 2019
Deposited On:18 Dec 2019 14:31
Last Modified:18 Dec 2019 14:31
Publisher:Nature Publishing Group
ISSN:1752-0894
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/s41561-019-0402-y

Download

Closed Access: Download allowed only for UZH members

Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 8MB
View at publisher