Header

UZH-Logo

Maintenance Infos

The key factors in physical activity type detection using real-life data: a systematic review


Allahbakhshi, Hoda; Hinrichs, Timo; Huang, Haosheng; Weibel, Robert (2019). The key factors in physical activity type detection using real-life data: a systematic review. Frontiers in Physiology, 10:75.

Abstract

Background: Physical activity (PA) is paramount for human health and well-being. However, there is a lack of information regarding the types of PA and the way they can exert an influence on functional and mental health as well as quality of life. Studies have measured and classified PA type in controlled conditions, but only provided limited insight into the validity of classifiers under real-life conditions. The advantage of utilizing the type dimension and the significance of real-life study designs for PA monitoring brought us to conduct a systematic literature review on PA type detection (PATD) under real-life conditions focused on three main criteria: methods for detecting PA types, using accelerometer data collected by portable devices, and real-life settings.

Method: The search of the databases, Web of Science, Scopus, PsycINFO, and PubMed, identified 1,170 publications. After screening of titles, abstracts and full texts using the above selection criteria, 21 publications were included in this review.

Results: This review is organized according to the three key elements constituting the PATD process using real-life datasets, including data collection, preprocessing, and PATD methods. Recommendations regarding these key elements are proposed, particularly regarding two important PA classes, i.e., posture and motion activities. Existing studies generally reported high to near-perfect classification accuracies. However, the data collection protocols and performance reporting schemes used varied significantly between studies, hindering a transparent performance comparison across methods.

Conclusion: Generally, considerably less studies focused on PA types, compared to other measures of PA assessment, such as PA intensity, and even less focused on real-life settings. To reliably differentiate the basic postures and motion activities in real life, two 3D accelerometers (thigh and hip) sampling at 20 Hz were found to provide the minimal sensor configuration. Decision trees are the most common classifier used in practical applications with real-life data. Despite the significant progress made over the past year in assessing PA in real-life settings, it remains difficult, if not impossible, to compare the performance of the various proposed methods. Thus, there is an urgent need for labeled, fully documented, and openly available reference datasets including a common evaluation framework.

Abstract

Background: Physical activity (PA) is paramount for human health and well-being. However, there is a lack of information regarding the types of PA and the way they can exert an influence on functional and mental health as well as quality of life. Studies have measured and classified PA type in controlled conditions, but only provided limited insight into the validity of classifiers under real-life conditions. The advantage of utilizing the type dimension and the significance of real-life study designs for PA monitoring brought us to conduct a systematic literature review on PA type detection (PATD) under real-life conditions focused on three main criteria: methods for detecting PA types, using accelerometer data collected by portable devices, and real-life settings.

Method: The search of the databases, Web of Science, Scopus, PsycINFO, and PubMed, identified 1,170 publications. After screening of titles, abstracts and full texts using the above selection criteria, 21 publications were included in this review.

Results: This review is organized according to the three key elements constituting the PATD process using real-life datasets, including data collection, preprocessing, and PATD methods. Recommendations regarding these key elements are proposed, particularly regarding two important PA classes, i.e., posture and motion activities. Existing studies generally reported high to near-perfect classification accuracies. However, the data collection protocols and performance reporting schemes used varied significantly between studies, hindering a transparent performance comparison across methods.

Conclusion: Generally, considerably less studies focused on PA types, compared to other measures of PA assessment, such as PA intensity, and even less focused on real-life settings. To reliably differentiate the basic postures and motion activities in real life, two 3D accelerometers (thigh and hip) sampling at 20 Hz were found to provide the minimal sensor configuration. Decision trees are the most common classifier used in practical applications with real-life data. Despite the significant progress made over the past year in assessing PA in real-life settings, it remains difficult, if not impossible, to compare the performance of the various proposed methods. Thus, there is an urgent need for labeled, fully documented, and openly available reference datasets including a common evaluation framework.

Statistics

Citations

Altmetrics

Downloads

10 downloads since deposited on 17 Dec 2019
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Physiology (medical), Physiology
Language:English
Date:12 February 2019
Deposited On:17 Dec 2019 10:02
Last Modified:17 Dec 2019 10:02
Publisher:Frontiers Research Foundation
ISSN:1664-042X
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fphys.2019.00075

Download

Gold Open Access

Download PDF  'The key factors in physical activity type detection using real-life data: a systematic review'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)