Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Red blood cells stabilize flow in brain microvascular networks

Schmid, Franca; Barrett, Matthew J P; Obrist, Dominik; Weber, Bruno; Jenny, Patrick (2019). Red blood cells stabilize flow in brain microvascular networks. PLoS Computational Biology, 15(8):e1007231.

Abstract

Capillaries are the prime location for oxygen and nutrient exchange in all tissues. Despite their fundamental role, our knowledge of perfusion and flow regulation in cortical capillary beds is still limited. Here, we use in vivo measurements and blood flow simulations in anatomically accurate microvascular network to investigate the impact of red blood cells (RBCs) on microvascular flow. Based on these in vivo and in silico experiments, we show that the impact of RBCs leads to a bias toward equating the values of the outflow velocities at divergent capillary bifurcations, for which we coin the term “well-balanced bifurcations”. Our simulation results further reveal that hematocrit heterogeneity is directly caused by the RBC dynamics, i.e. by their unequal partitioning at bifurcations and their effect on vessel resistance. These results provide the first in vivo evidence of the impact of RBC dynamics on the flow field in the cortical microvasculature. By structural and functional analyses of our blood flow simulations we show that capillary diameter changes locally alter flow and RBC distribution. A dilation of 10% along a vessel length of 100 μm increases the flow on average by 21% in the dilated vessel downstream a well-balanced bifurcation. The number of RBCs rises on average by 27%. Importantly, RBC up-regulation proves to be more effective the more balanced the outflow velocities at the upstream bifurcation are. Taken together, we conclude that diameter changes at capillary level bear potential to locally change the flow field and the RBC distribution. Moreover, our results suggest that the balancing of outflow velocities contributes to the robustness of perfusion. Based on our in silico results, we anticipate that the bi-phasic nature of blood and small-scale regulations are essential for a well-adjusted oxygen and energy

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Physical Sciences > Modeling and Simulation
Physical Sciences > Ecology
Life Sciences > Molecular Biology
Life Sciences > Genetics
Life Sciences > Cellular and Molecular Neuroscience
Physical Sciences > Computational Theory and Mathematics
Uncontrolled Keywords:Ecology, Modelling and Simulation, Computational Theory and Mathematics, Genetics, Ecology, Evolution, Behavior and Systematics, Molecular Biology, Cellular and Molecular Neuroscience
Language:English
Date:30 August 2019
Deposited On:08 Jan 2020 11:11
Last Modified:03 Mar 2025 04:36
Publisher:Public Library of Science (PLoS)
ISSN:1553-734X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pcbi.1007231
PubMed ID:31469820
Download PDF  'Red blood cells stabilize flow in brain microvascular networks'.
Preview
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
35 citations in Web of Science®
37 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

28 downloads since deposited on 08 Jan 2020
7 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications