Header

UZH-Logo

Maintenance Infos

Strain fidelity of chronic wasting disease upon murine adaptation


Sigurdson, C J; Manco, G; Schwarz, P; Liberski, P; Hoover, E A; Hornemann, S; Polymenidou, M; Miller, M W; Glatzel, M; Aguzzi, A (2006). Strain fidelity of chronic wasting disease upon murine adaptation. Journal of Virology, 80(24):12303-12311.

Abstract

Chronic wasting disease (CWD), a prion disease of deer and elk, is highly prevalent in some regions of North America. The establishment of mouse-adapted CWD prions has proven difficult due to the strong species barrier between mice and deer. Here we report the efficient transmission of CWD to transgenic mice overexpressing murine PrP. All mice developed disease 500 +/- 62 days after intracerebral CWD challenge. The incubation period decreased to 228 +/- 103 days on secondary passage and to 162 +/- 6 days on tertiary passage. Mice developed very large, radially structured cerebral amyloid plaques similar to those of CWD-infected deer and elk. PrP(Sc) was detected in spleen, indicating that murine CWD was lymphotropic. PrP(Sc) glycoform profiles maintained a predominantly diglycosylated PrP pattern, as seen with CWD in deer and elk, across all passages. Therefore, all pathological, biochemical, and histological strain characteristics of CWD appear to persist upon repetitive serial passage through mice. These findings indicate that the salient strain-specific properties of CWD are encoded by agent-intrinsic components rather than by host factors.

Abstract

Chronic wasting disease (CWD), a prion disease of deer and elk, is highly prevalent in some regions of North America. The establishment of mouse-adapted CWD prions has proven difficult due to the strong species barrier between mice and deer. Here we report the efficient transmission of CWD to transgenic mice overexpressing murine PrP. All mice developed disease 500 +/- 62 days after intracerebral CWD challenge. The incubation period decreased to 228 +/- 103 days on secondary passage and to 162 +/- 6 days on tertiary passage. Mice developed very large, radially structured cerebral amyloid plaques similar to those of CWD-infected deer and elk. PrP(Sc) was detected in spleen, indicating that murine CWD was lymphotropic. PrP(Sc) glycoform profiles maintained a predominantly diglycosylated PrP pattern, as seen with CWD in deer and elk, across all passages. Therefore, all pathological, biochemical, and histological strain characteristics of CWD appear to persist upon repetitive serial passage through mice. These findings indicate that the salient strain-specific properties of CWD are encoded by agent-intrinsic components rather than by host factors.

Statistics

Citations

Dimensions.ai Metrics
58 citations in Web of Science®
64 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

117 downloads since deposited on 11 Feb 2008
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Immunology
Life Sciences > Insect Science
Life Sciences > Virology
Language:English
Date:December 2006
Deposited On:11 Feb 2008 12:25
Last Modified:01 Dec 2023 02:41
Publisher:American Society for Microbiology
ISSN:0022-538X
Additional Information:Copyright: American Society for Microbiology
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/JVI.01120-06
PubMed ID:17020952