Header

UZH-Logo

Maintenance Infos

Prediction of Performance in a Short Trail Running Race: The Role of Body Composition


Alvero-Cruz, José Ramón; Parent Mathias, Verónica; Garcia Romero, Jerónimo; Carrillo de Albornoz-Gil, Margarita; Benítez-Porres, Javier; Ordoñez, Francisco Javier; Rosemann, Thomas; Nikolaidis, Pantelis T; Knechtle, Beat (2019). Prediction of Performance in a Short Trail Running Race: The Role of Body Composition. Frontiers in Physiology, 10:1306.

Abstract

The aim of the present study was to examine the role of the classical physiological model of endurance running performance – maximal oxygen uptake (VO2max), %VO2max at ventilatory thresholds (VT), work economy, lactate levels, and body composition on the prediction of short trail running performance. Eleven male trail runners (age 36.1 ± 6.5 years, sport experience 6.6 ± 3.8 years, and mean ± standard deviation) were examined for fat mass and skeletal muscle mass, and performed a graded exercise test to measure VO2max, vVO2max, and VT. Also, they participated in a short 27 km trail run with a positive elevation of +1750 m. Age, years of training and skeletal muscle mass did not correlate with race time (P > 0.05), and fat mass and body mass index (BMI) showed significant correlations with race time (P < 0.05). Heart rate, velocity and VT1 and VT2 were not associated with race time (P > 0.05). Only vVO2max (P = 0.005) and VO2max (P = 0.007) is correlated to race time. Multiple regression models for VO2max accounted for 57% of the total variance. The vVO2max model variable accounted for 60% and the fat mass model for 59.5%. Finally, the combined VO2max and fat mass model explained 83.9% of the total variance (P < 0.05 in all models). The equation for this model is “race time (min) = 203.9956−1.9001 × VO2max + 10.2816 × Fat mass%” (R2 = 0.839, SEE = 11.1 min, and P = 0.0007). The classical variable VO2max together with fat mass percent are two strong predictors for short trail running performance.

Abstract

The aim of the present study was to examine the role of the classical physiological model of endurance running performance – maximal oxygen uptake (VO2max), %VO2max at ventilatory thresholds (VT), work economy, lactate levels, and body composition on the prediction of short trail running performance. Eleven male trail runners (age 36.1 ± 6.5 years, sport experience 6.6 ± 3.8 years, and mean ± standard deviation) were examined for fat mass and skeletal muscle mass, and performed a graded exercise test to measure VO2max, vVO2max, and VT. Also, they participated in a short 27 km trail run with a positive elevation of +1750 m. Age, years of training and skeletal muscle mass did not correlate with race time (P > 0.05), and fat mass and body mass index (BMI) showed significant correlations with race time (P < 0.05). Heart rate, velocity and VT1 and VT2 were not associated with race time (P > 0.05). Only vVO2max (P = 0.005) and VO2max (P = 0.007) is correlated to race time. Multiple regression models for VO2max accounted for 57% of the total variance. The vVO2max model variable accounted for 60% and the fat mass model for 59.5%. Finally, the combined VO2max and fat mass model explained 83.9% of the total variance (P < 0.05 in all models). The equation for this model is “race time (min) = 203.9956−1.9001 × VO2max + 10.2816 × Fat mass%” (R2 = 0.839, SEE = 11.1 min, and P = 0.0007). The classical variable VO2max together with fat mass percent are two strong predictors for short trail running performance.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

14 downloads since deposited on 13 Jan 2020
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of General Practice
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Physiology
Health Sciences > Physiology (medical)
Uncontrolled Keywords:Physiology (medical), Physiology
Language:English
Date:16 October 2019
Deposited On:13 Jan 2020 09:02
Last Modified:22 Apr 2020 21:46
Publisher:Frontiers Research Foundation
ISSN:1664-042X
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fphys.2019.01306

Download

Gold Open Access

Download PDF  'Prediction of Performance in a Short Trail Running Race: The Role of Body Composition'.
Preview
Content: Published Version
Filetype: PDF
Size: 636kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)