Header

UZH-Logo

Maintenance Infos

Carbon source regulates polysaccharide capsule biosynthesis in Streptococcus pneumoniae


Troxler, Lukas J; Werren, Joel P; Schaffner, Thierry O; Mostacci, Nadezda; Vermathen, Peter; Vermathen, Martina; Wüthrich, Daniel; Simillion, Cedric; Brugger, Silvio D; Bruggmann, Rémy; Hathaway, Lucy J; Furrer, Julien; Hilty, Markus (2019). Carbon source regulates polysaccharide capsule biosynthesis in Streptococcus pneumoniae. Journal of Biological Chemistry, 294(46):17224-17238.

Abstract

The exopolysaccharide capsule of Streptococcus pneumoniae is an important virulence factor, but the mechanisms that regulate capsule thickness are not fully understood. Here, we investigated the effects of various exogenously supplied carbohydrates on capsule production and gene expression in several pneumococcal serotypes. Microscopy analyses indicated a near absence of the capsular polysaccharide (CPS) when S. pneumoniae was grown on fructose. Moreover, serotype 7F pneumococci produced much less CPS than strains of other serotypes (6B, 6C, 9V, 15, and 23F) when grown on glucose or sucrose. RNA-sequencing revealed carbon source-dependent regulation of distinct genes of WT strains and capsule-switch mutants of serotypes 6B and 7F, but could not explain the mechanism of capsule thickness regulation. In contrast, $^{31}$P NMR of whole-cell extract from capsule-knockout strains (Δcps) clearly revealed the accumulation or absence of capsule precursor metabolites when cells were grown on glucose or fructose, respectively. This finding suggests that fructose uptake mainly results in intracellular fructose 1-phosphate, which is not converted to CPS precursors. In addition, serotype 7F strains accumulated more precursors than did 6B strains, indicating less efficient conversion of precursor metabolites into the CPS in 7F, in line with its thinner capsule. Finally, isotopologue sucrose labeling and NMR analyses revealed that the uptake of the labeled fructose subunit into the capsule is <10% that of glucose. Our findings on the effects of carbon sources on CPS production in different S. pneumoniae serotypes may contribute to a better understanding of pneumococcal diseases and could inform future therapeutic approaches.

Abstract

The exopolysaccharide capsule of Streptococcus pneumoniae is an important virulence factor, but the mechanisms that regulate capsule thickness are not fully understood. Here, we investigated the effects of various exogenously supplied carbohydrates on capsule production and gene expression in several pneumococcal serotypes. Microscopy analyses indicated a near absence of the capsular polysaccharide (CPS) when S. pneumoniae was grown on fructose. Moreover, serotype 7F pneumococci produced much less CPS than strains of other serotypes (6B, 6C, 9V, 15, and 23F) when grown on glucose or sucrose. RNA-sequencing revealed carbon source-dependent regulation of distinct genes of WT strains and capsule-switch mutants of serotypes 6B and 7F, but could not explain the mechanism of capsule thickness regulation. In contrast, $^{31}$P NMR of whole-cell extract from capsule-knockout strains (Δcps) clearly revealed the accumulation or absence of capsule precursor metabolites when cells were grown on glucose or fructose, respectively. This finding suggests that fructose uptake mainly results in intracellular fructose 1-phosphate, which is not converted to CPS precursors. In addition, serotype 7F strains accumulated more precursors than did 6B strains, indicating less efficient conversion of precursor metabolites into the CPS in 7F, in line with its thinner capsule. Finally, isotopologue sucrose labeling and NMR analyses revealed that the uptake of the labeled fructose subunit into the capsule is <10% that of glucose. Our findings on the effects of carbon sources on CPS production in different S. pneumoniae serotypes may contribute to a better understanding of pneumococcal diseases and could inform future therapeutic approaches.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 13 Jan 2020
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Life Sciences > Cell Biology
Language:English
Date:15 November 2019
Deposited On:13 Jan 2020 09:47
Last Modified:01 Dec 2020 13:19
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1074/jbc.RA119.010764
PubMed ID:31594867

Download

Hybrid Open Access

Download PDF  'Carbon source regulates polysaccharide capsule biosynthesis in Streptococcus pneumoniae'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher