Header

UZH-Logo

Maintenance Infos

Targeted photoredox catalysis in cancer cells


Abstract

Hypoxic tumours are a major problem for cancer photodynamic therapy. Here, we show that photoredox catalysis can provide an oxygen-independent mechanism of action to combat this problem. We have designed a highly oxidative Ir(III) photocatalyst, [Ir(ttpy)(pq)CI]PF6 ([1]PF6, where 'ttpy' represents 4'-(p-tolyl)-2,2':6',2 ''-terpyridine and 'pq' represents 3-phenylisoquinoline), which is phototoxic towards both normoxic and hypoxic cancer cells. Complex 1 photocatalytically oxidizes 1,4-dihydronicotinamide adenine dinucleotide (NADH)-an important coenzyme in living cells-generating NAD center dot radicals with a high turnover frequency in biological media. Moreover, complex 1 and NADH synergistically photoreduce cytochrome c under hypoxia. Density functional theory calculations reveal pi stacking in adducts of complex 1 and NADH, facilitating photoinduced single-electron transfer. In cancer cells, complex 1 localizes in mitochondria and disrupts electron transport via NADH photocatalysis. On light irradiation, complex 1 induces NADH depletion, intracellular redox imbalance and immunogenic apoptotic cancer cell death. This photocatalytic redox imbalance strategy offers a new approach for efficient cancer phototherapy.

Abstract

Hypoxic tumours are a major problem for cancer photodynamic therapy. Here, we show that photoredox catalysis can provide an oxygen-independent mechanism of action to combat this problem. We have designed a highly oxidative Ir(III) photocatalyst, [Ir(ttpy)(pq)CI]PF6 ([1]PF6, where 'ttpy' represents 4'-(p-tolyl)-2,2':6',2 ''-terpyridine and 'pq' represents 3-phenylisoquinoline), which is phototoxic towards both normoxic and hypoxic cancer cells. Complex 1 photocatalytically oxidizes 1,4-dihydronicotinamide adenine dinucleotide (NADH)-an important coenzyme in living cells-generating NAD center dot radicals with a high turnover frequency in biological media. Moreover, complex 1 and NADH synergistically photoreduce cytochrome c under hypoxia. Density functional theory calculations reveal pi stacking in adducts of complex 1 and NADH, facilitating photoinduced single-electron transfer. In cancer cells, complex 1 localizes in mitochondria and disrupts electron transport via NADH photocatalysis. On light irradiation, complex 1 induces NADH depletion, intracellular redox imbalance and immunogenic apoptotic cancer cell death. This photocatalytic redox imbalance strategy offers a new approach for efficient cancer phototherapy.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 13 Jan 2020
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Uncontrolled Keywords:General Chemistry, General Chemical Engineering
Language:English
Date:1 November 2019
Deposited On:13 Jan 2020 10:06
Last Modified:22 Jan 2020 10:45
Publisher:Nature Publishing Group
ISSN:1755-4330
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/s41557-019-0328-4

Download

Closed Access: Download allowed only for UZH members

Content: Accepted Version
Filetype: PDF - Registered users only until 23 March 2020
Size: 2MB
View at publisher
Embargo till: 2020-03-23