Header

UZH-Logo

Maintenance Infos

The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people - a proof of concept study


Aurich-Schuler, Tabea; Gut, Anja; Labruyère, Rob (2019). The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people - a proof of concept study. Journal of Neuroengineering and Rehabilitation (JNER), 16:26.

Abstract

BACKGROUND
A contralateral pelvic drop, a transverse rotation and a lateral translation of the pelvis are essential features of normal human gait. These motions are often restricted in robot-assisted gait devices. The optional FreeD module of the driven gait orthosis Lokomat (Hocoma AG, Switzerland) incorporates guided lateral translation and transverse rotation of the pelvis. It consequently should support weight shifting during walking. This study aimed to investigate the influence of the FreeD module on trunk kinematics and hip and trunk muscle activity.
METHODS
Thirty- one healthy adults participated. A video analysis of their trunk movements was performed to investigate the lateral chest and pelvis displacement within the Lokomat (with and without FreeD), and this was compared to treadmill walking. Furthermore, surface electromyography (sEMG) signals from eight muscles were collected during walking in the Lokomat (with and without FreeD), on the treadmill, and overground. To compare the similarity of the sEMG patterns, Spearman's correlation analyses were applied.
RESULTS
Walking with FreeD elicited a significantly higher lateral pelvis displacement and a lower lateral chest displacement (relative to the pelvis) compared to walking with a fixated pelvis. No significant differences in the sEMG patterns were found for the Lokomat conditions (with and without FreeD) when comparing it to treadmill or overground walking.
CONCLUSIONS
The differences in pelvis displacement act as a proof of concept of the FreeD module. The reduction of relative lateral chest movement corresponds to a decrease in compensatory trunk movements and has its origin in allowing weight shifting through the FreeD module. Both Lokomat conditions showed very similar muscle activity patterns of the trunk and hip compared to overground and treadmill walking. This indicates that the Lokomat allows a physiological muscle activity of the trunk and hip during gait.

Abstract

BACKGROUND
A contralateral pelvic drop, a transverse rotation and a lateral translation of the pelvis are essential features of normal human gait. These motions are often restricted in robot-assisted gait devices. The optional FreeD module of the driven gait orthosis Lokomat (Hocoma AG, Switzerland) incorporates guided lateral translation and transverse rotation of the pelvis. It consequently should support weight shifting during walking. This study aimed to investigate the influence of the FreeD module on trunk kinematics and hip and trunk muscle activity.
METHODS
Thirty- one healthy adults participated. A video analysis of their trunk movements was performed to investigate the lateral chest and pelvis displacement within the Lokomat (with and without FreeD), and this was compared to treadmill walking. Furthermore, surface electromyography (sEMG) signals from eight muscles were collected during walking in the Lokomat (with and without FreeD), on the treadmill, and overground. To compare the similarity of the sEMG patterns, Spearman's correlation analyses were applied.
RESULTS
Walking with FreeD elicited a significantly higher lateral pelvis displacement and a lower lateral chest displacement (relative to the pelvis) compared to walking with a fixated pelvis. No significant differences in the sEMG patterns were found for the Lokomat conditions (with and without FreeD) when comparing it to treadmill or overground walking.
CONCLUSIONS
The differences in pelvis displacement act as a proof of concept of the FreeD module. The reduction of relative lateral chest movement corresponds to a decrease in compensatory trunk movements and has its origin in allowing weight shifting through the FreeD module. Both Lokomat conditions showed very similar muscle activity patterns of the trunk and hip compared to overground and treadmill walking. This indicates that the Lokomat allows a physiological muscle activity of the trunk and hip during gait.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

13 downloads since deposited on 13 Jan 2020
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Rehabilitation
Health Sciences > Health Informatics
Language:English
Date:6 February 2019
Deposited On:13 Jan 2020 10:58
Last Modified:27 Dec 2020 08:23
Publisher:BioMed Central
ISSN:1743-0003
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12984-019-0496-x
PubMed ID:30728040

Download

Gold Open Access

Download PDF  'The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people - a proof of concept study'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)