Header

UZH-Logo

Maintenance Infos

Electron-driven C2-symmetric Dirac semimetal uncovered in Ca3Ru2O7


Horio, M; Jöhr, S; Sutter, D; Das, L; Fischer, Mark; Chang, J (2019). Electron-driven C2-symmetric Dirac semimetal uncovered in Ca3Ru2O7. arXiv.org 1911.12163, University of Zurich.

Abstract

Two-dimensional semimetals have been the center of intensified investigations since the realization of graphene. In particular, the design of Dirac and Weyl semimetals has been scrutinized. Typically, Dirac metals emerge from crystal-field environments captured by density functional theory (DFT). Here, we show by angle-resolved photoemission spectroscopy (ARPES) how a rotational symmetry broken massive Dirac semimetal is realized in Ca3Ru2O7. This Dirac semimetal emerges in a two-stage electronic transition driven by electron correlations beyond the DFT paradigm. The Dirac point and band velocity is consistent with constraints set by quantum oscillation, thermodynamic and transport experiments. Our results hence advance the understanding of the peculiar fermiology found in Ca3Ru2O7. As the two-stage Fermi surface transition preserves the Brillouin zone, translational broken symmetries are excluded. The mechanism and symmetry breaking elements underlying the electronic reconstruction thus remain to be identified. This situation resembles URu2Si2 that also undergoes an electronic transition without an identifiable symmetry breaking. As such our study positions Ca3Ru2O7 as another prominent hidden order parameter problem.

Abstract

Two-dimensional semimetals have been the center of intensified investigations since the realization of graphene. In particular, the design of Dirac and Weyl semimetals has been scrutinized. Typically, Dirac metals emerge from crystal-field environments captured by density functional theory (DFT). Here, we show by angle-resolved photoemission spectroscopy (ARPES) how a rotational symmetry broken massive Dirac semimetal is realized in Ca3Ru2O7. This Dirac semimetal emerges in a two-stage electronic transition driven by electron correlations beyond the DFT paradigm. The Dirac point and band velocity is consistent with constraints set by quantum oscillation, thermodynamic and transport experiments. Our results hence advance the understanding of the peculiar fermiology found in Ca3Ru2O7. As the two-stage Fermi surface transition preserves the Brillouin zone, translational broken symmetries are excluded. The mechanism and symmetry breaking elements underlying the electronic reconstruction thus remain to be identified. This situation resembles URu2Si2 that also undergoes an electronic transition without an identifiable symmetry breaking. As such our study positions Ca3Ru2O7 as another prominent hidden order parameter problem.

Statistics

Downloads

2 downloads since deposited on 07 Jan 2020
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Working Paper
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2019
Deposited On:07 Jan 2020 12:28
Last Modified:08 Jan 2020 04:16
Series Name:arXiv.org
ISSN:2331-8422
OA Status:Green
Related URLs:https://arxiv.org/abs/1911.12163

Download

Green Open Access

Download PDF  'Electron-driven C2-symmetric Dirac semimetal uncovered in Ca3Ru2O7'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB