Header

UZH-Logo

Maintenance Infos

Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO’s Second Observing Run


Tiwari, S.; Haney, Maria; Boetzel, Yannick; et al (2019). Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO’s Second Observing Run. The Astrophysical Journal:874:163.

Abstract

We present the results of a search for short- and intermediate-duration gravitational-wave signals from four magnetar bursts in Advanced LIGO's second observing run. We find no evidence of a signal and set upper bounds on the root sum squared of the total dimensionless strain (h rss) from incoming intermediate-duration gravitational waves ranging from 1.1 × 10−22 at 150 Hz to 4.4 × 10−22 at 1550 Hz at 50% detection efficiency. From the known distance to the magnetar SGR 1806–20 (8.7 kpc), we can place upper bounds on the isotropic gravitational-wave energy of 3.4 × 1044 erg at 150 Hz assuming optimal orientation. This represents an improvement of about a factor of 10 in strain sensitivity from the previous search for such signals, conducted during initial LIGO's sixth science run. The short-duration search yielded upper limits of 2.1 × 1044 erg for short white noise bursts, and 2.3 × 1047 erg for 100 ms long ringdowns at 1500 Hz, both at 50% detection efficiency.

Abstract

We present the results of a search for short- and intermediate-duration gravitational-wave signals from four magnetar bursts in Advanced LIGO's second observing run. We find no evidence of a signal and set upper bounds on the root sum squared of the total dimensionless strain (h rss) from incoming intermediate-duration gravitational waves ranging from 1.1 × 10−22 at 150 Hz to 4.4 × 10−22 at 1550 Hz at 50% detection efficiency. From the known distance to the magnetar SGR 1806–20 (8.7 kpc), we can place upper bounds on the isotropic gravitational-wave energy of 3.4 × 1044 erg at 150 Hz assuming optimal orientation. This represents an improvement of about a factor of 10 in strain sensitivity from the previous search for such signals, conducted during initial LIGO's sixth science run. The short-duration search yielded upper limits of 2.1 × 1044 erg for short white noise bursts, and 2.3 × 1047 erg for 100 ms long ringdowns at 1500 Hz, both at 50% detection efficiency.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 09 Jan 2020
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:4 April 2019
Deposited On:09 Jan 2020 13:07
Last Modified:09 Jan 2020 13:08
Publisher:IOP Publishing
ISSN:1538-4357
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3847/1538-4357/ab0e15

Download

Green Open Access

Download PDF  'Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO’s Second Observing Run'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher