Header

UZH-Logo

Maintenance Infos

Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run


LIGO Scientific Collaboration; Virgo Collaboration; et al; Boetzel, Yannick; Tiwari, Shubhanshu; Haney, Maria (2019). Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical review D, 99(12):122002.

Abstract

Isolated spinning neutron stars, asymmetric with respect to their rotation axis, are expected to be sources of continuous gravitational waves. The most sensitive searches for these sources are based on accurate matched filtering techniques that assume the continuous wave to be phase locked with the pulsar beamed emission. While matched filtering maximizes the search sensitivity, a significant signal-to-noise ratio loss will happen in the case of a mismatch between the assumed and the true signal phase evolution. Narrow-band algorithms allow for a small mismatch in the frequency and spin-down values of the pulsar while coherently integrating the entire dataset. In this paper, we describe a narrow-band search using LIGO O2 data for the continuous wave emission of 33 pulsars. No evidence of a continuous wave signal is found, and upper limits on the gravitational wave amplitude over the analyzed frequency and spin-down ranges are computed for each of the targets. In this search, we surpass the spin-down limit, namely, the maximum rotational energy loss due to gravitational waves emission for some of the pulsars already present in the LIGO O1 narrow-band search, such as J1400−6325, J1813−1246, J1833−1034, J1952+3252, and for new targets such as J0940−5428 and J1747−2809. For J1400−6325, J1833−1034, and J1747−2809, this is the first time the spin-down limit is surpassed.

Abstract

Isolated spinning neutron stars, asymmetric with respect to their rotation axis, are expected to be sources of continuous gravitational waves. The most sensitive searches for these sources are based on accurate matched filtering techniques that assume the continuous wave to be phase locked with the pulsar beamed emission. While matched filtering maximizes the search sensitivity, a significant signal-to-noise ratio loss will happen in the case of a mismatch between the assumed and the true signal phase evolution. Narrow-band algorithms allow for a small mismatch in the frequency and spin-down values of the pulsar while coherently integrating the entire dataset. In this paper, we describe a narrow-band search using LIGO O2 data for the continuous wave emission of 33 pulsars. No evidence of a continuous wave signal is found, and upper limits on the gravitational wave amplitude over the analyzed frequency and spin-down ranges are computed for each of the targets. In this search, we surpass the spin-down limit, namely, the maximum rotational energy loss due to gravitational waves emission for some of the pulsars already present in the LIGO O1 narrow-band search, such as J1400−6325, J1813−1246, J1833−1034, J1952+3252, and for new targets such as J0940−5428 and J1747−2809. For J1400−6325, J1833−1034, and J1747−2809, this is the first time the spin-down limit is surpassed.

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

14 downloads since deposited on 09 Jan 2020
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Physics and Astronomy (miscellaneous)
Uncontrolled Keywords:Physics and Astronomy (miscellaneous)
Language:English
Date:27 June 2019
Deposited On:09 Jan 2020 16:32
Last Modified:12 Sep 2020 03:39
Publisher:American Physical Society
ISSN:2470-0010
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1103/physrevd.99.122002

Download

Hybrid Open Access

Download PDF  'Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher