Header

UZH-Logo

Maintenance Infos

Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run


Virgo Collaboration; LIGO Scientific; et al; Tiwari, S.; Haney, Maria; Boetzel, Yannick (2019). Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run. Physical review D, 100(6):061101.

Abstract

The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO’s second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of ΩGW<6.0×10−8 for a frequency-independent (flat) background and ΩGW<4.8×10−8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.

Abstract

The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO’s second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of ΩGW<6.0×10−8 for a frequency-independent (flat) background and ΩGW<4.8×10−8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.

Statistics

Citations

Dimensions.ai Metrics
11 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 09 Jan 2020
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Physics and Astronomy (miscellaneous)
Language:English
Date:4 September 2019
Deposited On:09 Jan 2020 16:18
Last Modified:14 Feb 2020 08:28
Publisher:American Physical Society
ISSN:2470-0010
OA Status:Green
Publisher DOI:https://doi.org/10.1103/physrevd.100.061101

Download

Green Open Access

Download PDF  'Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run'.
Preview
Content: Published Version
Filetype: PDF
Size: 831kB
View at publisher