Header

UZH-Logo

Maintenance Infos

Directional limits on persistent gravitational waves using data from Advanced LIGO’s first two observing runs


LIGO Scientific Collaboration; Virgo Collaboration; et al; Tiwari, S.; Haney, Maria; Boetzel, Yannick (2019). Directional limits on persistent gravitational waves using data from Advanced LIGO’s first two observing runs. Physical review D, 100:062001.

Abstract

We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with a power law spectrum at Fα,Θ<(0.05–25)×10−8  erg cm−2 s−1 Hz−1 and the (normalized) energy density spectrum in GWs at 25 Hz from extended sources at Ωα(Θ)<(0.19–2.89)×10−8  sr−1 where α is the spectral index of the energy density spectrum. These represent improvements of 2.5–3× over previous limits. We also consider point sources emitting GWs at a single frequency, targeting the directions of Sco X-1, SN 1987A, and the Galactic center. The best upper limits on the strain amplitude of a potential source in these three directions range from h0<(3.6–4.7)×10−25, 1.5× better than previous limits set with the same analysis method. We also report on a marginally significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave source as its significance diminishes when combining all of the available data.

Abstract

We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with a power law spectrum at Fα,Θ<(0.05–25)×10−8  erg cm−2 s−1 Hz−1 and the (normalized) energy density spectrum in GWs at 25 Hz from extended sources at Ωα(Θ)<(0.19–2.89)×10−8  sr−1 where α is the spectral index of the energy density spectrum. These represent improvements of 2.5–3× over previous limits. We also consider point sources emitting GWs at a single frequency, targeting the directions of Sco X-1, SN 1987A, and the Galactic center. The best upper limits on the strain amplitude of a potential source in these three directions range from h0<(3.6–4.7)×10−25, 1.5× better than previous limits set with the same analysis method. We also report on a marginally significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave source as its significance diminishes when combining all of the available data.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 09 Jan 2020
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Physics and Astronomy (miscellaneous)
Language:English
Date:4 September 2019
Deposited On:09 Jan 2020 13:47
Last Modified:14 Feb 2020 08:28
Publisher:American Physical Society
ISSN:2470-0010
OA Status:Green
Publisher DOI:https://doi.org/10.1103/physrevd.100.062001

Download

Green Open Access

Download PDF  'Directional limits on persistent gravitational waves using data from Advanced LIGO’s first two observing runs'.
Preview
Content: Published Version
Filetype: PDF
Size: 970kB
View at publisher