Header

UZH-Logo

Maintenance Infos

A simple sleep EEG marker in childhood predicts brain myelin 3.5 years later


LeBourgeois, Monique K; Dean, Douglas C; Deoni, Sean C L; Kohler, Malcolm; Kurth, Salome (2019). A simple sleep EEG marker in childhood predicts brain myelin 3.5 years later. NeuroImage, 199:342-350.

Abstract

Epidemiological research reveals that insufficient sleep in children has negative cognitive and emotional consequences; however, the physiological underpinnings of these observations remain understudied. We tested the hypothesis that the topographical distribution of deep sleep slow wave activity during the childhood predicts brain white matter microstructure (myelin) 3.5 y later. Healthy children underwent sleep high-density EEG at baseline (n = 13; ages 2.4–8.0 y) and follow-up (n = 14; ages 5.5–12.2 y). At follow-up, myelin (myelin water fraction) and cortical morphology were also quantified. Our investigation revealed 3 main findings. (1) The Frontal/Occipital (F/O)-ratio at baseline strongly predicted whole brain myelin at follow-up. (2) At follow-up, the F/O-ratio was only minimally (negatively) linked to brain myelin. (3) Cortical morphology was not related to the F/O-ratio, neither at baseline nor at follow-up. Our results support the hypothesis that during child development EEG markers during sleep longitudinally predict brain myelin content. Data extend previous findings reporting a link between EEG markers of sleep need and cortical morphology, by supporting the hypothesis that sleep is a necessary component to underlying processes of brain, and specifically myelin, maturation. In line with the overarching theory that sleep contributes to neurodevelopmental processes, it remains to be investigated whether chronic sleep loss negatively affects white matter myelin microstructure growth during sensitive periods of development.

Abstract

Epidemiological research reveals that insufficient sleep in children has negative cognitive and emotional consequences; however, the physiological underpinnings of these observations remain understudied. We tested the hypothesis that the topographical distribution of deep sleep slow wave activity during the childhood predicts brain white matter microstructure (myelin) 3.5 y later. Healthy children underwent sleep high-density EEG at baseline (n = 13; ages 2.4–8.0 y) and follow-up (n = 14; ages 5.5–12.2 y). At follow-up, myelin (myelin water fraction) and cortical morphology were also quantified. Our investigation revealed 3 main findings. (1) The Frontal/Occipital (F/O)-ratio at baseline strongly predicted whole brain myelin at follow-up. (2) At follow-up, the F/O-ratio was only minimally (negatively) linked to brain myelin. (3) Cortical morphology was not related to the F/O-ratio, neither at baseline nor at follow-up. Our results support the hypothesis that during child development EEG markers during sleep longitudinally predict brain myelin content. Data extend previous findings reporting a link between EEG markers of sleep need and cortical morphology, by supporting the hypothesis that sleep is a necessary component to underlying processes of brain, and specifically myelin, maturation. In line with the overarching theory that sleep contributes to neurodevelopmental processes, it remains to be investigated whether chronic sleep loss negatively affects white matter myelin microstructure growth during sensitive periods of development.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

9 downloads since deposited on 13 Jan 2020
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Pneumology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Life Sciences > Cognitive Neuroscience
Uncontrolled Keywords:Cognitive Neuroscience, Neurology
Language:English
Date:1 October 2019
Deposited On:13 Jan 2020 16:28
Last Modified:29 Jul 2020 12:32
Publisher:Elsevier
ISSN:1053-8119
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2019.05.072
PubMed ID:31170459
Project Information:
  • : FunderSNSF
  • : Grant IDPBZHP3-138801
  • : Project TitleBrain Connectivity and Sleep in Preschool Children

Download

Hybrid Open Access

Download PDF  'A simple sleep EEG marker in childhood predicts brain myelin 3.5 years later'.
Preview
Content: Published Version
Filetype: PDF
Size: 942kB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)