Abstract
Calibration of an item bank for computer adaptive testing requires substantial resources. In this study, we investigated whether the efficiency of calibration under the Rasch model could be enhanced by improving the match between item difficulty and student ability. We introduced targeted multistage calibration designs, a design type that considers ability‐related background variables and performance for assigning students to suitable items. Furthermore, we investigated whether uncertainty about item difficulty could impair the assembling of efficient designs. The results indicated that targeted multistage calibration designs were more efficient than ordinary targeted designs under optimal conditions. Limited knowledge about item difficulty reduced the efficiency of one of the two investigated targeted multistage calibration designs, whereas targeted designs were more robust.