Header

UZH-Logo

Maintenance Infos

A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis


Johnson, Douglas B; McDonnell, Wyatt J; Gonzalez-Ericsson, Paula I; et al; Goldinger, Simone M; Rushing, Elisabeth J (2019). A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nature Medicine, 25(8):1243-1250.

Abstract

Checkpoint inhibitors produce durable responses in numerous metastatic cancers, but immune-related adverse events (irAEs) complicate and limit their benefit. IrAEs can affect organ systems idiosyncratically; presentations range from mild and self-limited to fulminant and fatal. The molecular mechanisms underlying irAEs are poorly understood. Here, we report a fatal case of encephalitis arising during anti-programmed cell death receptor 1 therapy in a patient with metastatic melanoma. Histologic analyses revealed robust T cell infiltration and prominent programmed death ligand 1 expression. We identified 209 reported cases in global pharmacovigilance databases (across multiple cancer types) of encephalitis associated with checkpoint inhibitor regimens, with a 19% fatality rate. We performed further analyses from the index case and two additional cases to shed light on this recurrent and fulminant irAE. Spatial and multi-omic analyses pinpointed activated memory CD4+ T cells as highly enriched in the inflamed, affected region. We identified a highly oligoclonal T cell receptor repertoire, which we localized to activated memory cytotoxic (CD45RO+GZMB+Ki67+) CD4 cells. We also identified Epstein-Barr virus-specific T cell receptors and EBV+ lymphocytes in the affected region, which we speculate contributed to neural inflammation in the index case. Collectively, the three cases studied here identify CD4+ and CD8+ T cells as culprits of checkpoint inhibitor-associated immune encephalitis.

Abstract

Checkpoint inhibitors produce durable responses in numerous metastatic cancers, but immune-related adverse events (irAEs) complicate and limit their benefit. IrAEs can affect organ systems idiosyncratically; presentations range from mild and self-limited to fulminant and fatal. The molecular mechanisms underlying irAEs are poorly understood. Here, we report a fatal case of encephalitis arising during anti-programmed cell death receptor 1 therapy in a patient with metastatic melanoma. Histologic analyses revealed robust T cell infiltration and prominent programmed death ligand 1 expression. We identified 209 reported cases in global pharmacovigilance databases (across multiple cancer types) of encephalitis associated with checkpoint inhibitor regimens, with a 19% fatality rate. We performed further analyses from the index case and two additional cases to shed light on this recurrent and fulminant irAE. Spatial and multi-omic analyses pinpointed activated memory CD4+ T cells as highly enriched in the inflamed, affected region. We identified a highly oligoclonal T cell receptor repertoire, which we localized to activated memory cytotoxic (CD45RO+GZMB+Ki67+) CD4 cells. We also identified Epstein-Barr virus-specific T cell receptors and EBV+ lymphocytes in the affected region, which we speculate contributed to neural inflammation in the index case. Collectively, the three cases studied here identify CD4+ and CD8+ T cells as culprits of checkpoint inhibitor-associated immune encephalitis.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

1 download since deposited on 15 Jan 2020
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology, General Medicine
Language:English
Date:1 August 2019
Deposited On:15 Jan 2020 15:22
Last Modified:15 Jan 2020 15:22
Publisher:Nature Publishing Group
ISSN:1078-8956
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/s41591-019-0523-2
PubMed ID:31332390

Download

Closed Access: Download allowed only for UZH members